2025 Spring: Torsion on elliptic curves
Lecture notes (I do NOT claim any originality of the material):
Lecture 1 Lecture 2 Lecture 3 Lecture 4 Lecture 5 Lecture 6 Lecture 7 Lecture 8 Lecture 9 Lecture 10
Lecture 11 Lecture 12 Lecture 13 Lecture 14 Lecture 15
References:
"Rational isogenies of prime degree" by Barry Mazur, Invent. Math.
"Bornes pour la torsion des courbes elliptiques sur les corps de nombre" by Loïc Merel, Invent. Math.
2024 Fall: Mazur's torsion theorem
Lecture notes (I do NOT claim any originality of the material):
Lecture 1 Lecture 2 Lecture 3 Lecture 4 Lecture 5 Lecture 6 Lecture 7 Lecture 8 Lecture 9 Lecture 10
Lecture 11 Lecture 12 Lecture 13 Lecture 14 Lecture 15 Lecture 16 Lecture 17 Lecture 18 Lecture 19 Lecture 20
Lecture 21 Lecture 22 Lecture 23 Lecture 24
References:
"Modular curves and the Eisenstein ideal" by Barry Mazur, Publ. Math. Inst. Hautes Etudes Sci.
Snowden's course at Univ. of Michigan (2013 fall)
2024 Spring: Diophantine problems and p-adic period mappings
Lecture notes (I do NOT claim any originality of the material):
Lecture 1 Lecture 2 Lecture 3 Lecture 4 Lecture 5 Lecture 6 Lecture 7 Lecture 8 Lecture 9 Lecture 10
Lecture 11 Lecture 12 Lecture 13 Lecture 14 Lecture 15 Lecture 16 Lecture 17 Lecture 18 Lecture 19 Lecture 20
Lecture 21 Lecture 22 Lecture 23 Lecture 24
References: "Diophantine problems and p-adic period mappings" by Lawrence and Venkatesh, Invent. Math.
2023 Fall: Prismatic Dieudonné Theory
Lecture notes (I do NOT claim any originality of the material):
Lecture 1 Lecture 2 Lecture 3 Lecture 4 Lecture 5 Lecture 6 Lecture 7 Lecture 8 Lecture 9 Lecture 10
Lecture 11 Lecture 12 Lecture 13 Lecture 14 Lecture 15 Lecture 16 Lecture 17 Lecture 18 Lecture 19 Lecture 20
Lecture 21 Lecture 22 Lecture 23 Lecture 24
References: "Prismatic Dieudonné Theory" by Anschütz and Le Bras, Forum Math. Pi
2023 Spring: Eigenvarieties, families of Galois representations, p-adic L-functions
Lecture notes (I do NOT claim any originality of the material):
Lecture 1 Lecture 2 Lecture 3 Lecture 4 Lecture 5 Lecture 6 Lecture 7 Lecture 8 Lecture 9 Lecture 10
Lecture 11 Lecture 12 Lecture 13 Lecture 14 Lecture 15 Lecture 16 Lecture 17 Lecture 18 Lecture 19 Lecture 20
Lecture 21 Lecture 22 Lecture 23 Lecture 24 Lecture 25 Lecture 26 Lecture 27 Lecture 28
References: "The Eigenbook" by Joel Bellaiche
2022 Fall: Introduction to Prismatic Cohomology
Lecture Notes (I do NOT claim any originality of the material):
Lecture 1 Lecture 2 Lecture 3 Lecture 4 Lecture 5 Lecture 6 Lecture 7 Lecture 8 Lecture 9 Lecture 10
Lecture 11 Lecture 12 Lecture 13 Lecture 14 Lecture 15 Lecture 16 Lecture 17 Lecture 18 Lecture 19 Lecture 20
Lecture 21 Lecture 22 Lecture 23 Lecture 24 Lecture 25 Lecture 26 Lecture 27 Lecture 28
References:
"Prisms and prismatic cohomology" by Bhatt and Scholze, Annals of Mathematics
Bhatt's Eilenberg lectures at Columbia University (2018 fall)
Kedlaya's course notes at UC San Diego (2021 spring)