Gwilliams, L., Bhaya-Grossman, I., Zhang, Y., Scott, T., Harper, S., & Levy, D. (2024). Computational Architecture of Speech Comprehension in the Human Brain. Annual Review of Linguistics, 11.
Choi, M., Zhang, Y., Han, K., & Liu, Z. (2024). Human Eyes–Inspired Recurrent Neural Networks Are More Robust Against Adversarial Noises. Neural Computation, 36(9), 1713-1743.
Choi, M., Han, K., Wang, X., Zhang, Y., & Liu, Z. (2023). A dual-stream neural network explains the functional segregation of dorsal and ventral visual pathways in human brains. Advances in Neural Information Processing Systems, 36, 50408-50428.
Zhang, Y., Choi, M., Han, K., & Liu, Z (2021). Explainable Semantic Space by Grounding Language to Vision with Cross-Modal Contrastive Learning. Advances in Neural Information Processing Systems, 34, 18513-18526.
Kim, J. H., Zhang, Y., Han, K., Wen, Z., Choi, M., & Liu, Z. (2021). Representation learning of resting state fMRI with variational autoencoder. NeuroImage, 241, 118423.
Zhang, Y., Kim, J. H., Brang, D., & Liu, Z. (2021). Naturalistic stimuli: A paradigm for multiscale functional characterization of the human brain. Current Opinion in Biomedical Engineering, 100298.
Zhang, Y., Han, K., Worth, R., Liu, Z. (2020). Connecting concepts in the brain by mapping cortical representations of semantic relations. Nat Commun 11, 1877. https://doi.org/10.1038/s41467-020-15804-w.
Han, K., Wen, H., Zhang, Y., Fu D., Culurciello E., Liu Z. (2018). Deep Predictive Coding Network with Local Recurrent Processing for Object Recognition. NIPS.
Wen, H., Han, K., Shi, J., Zhang, Y., Culurciello, E., & Liu, Z. (2018). Deep predictive coding network for object recognition. ICML, 80:5263-5272, 2018
Han, K., Wen, H., Shi, J., Lu, K. H., Zhang, Y., & Liu, Z. (2018). Variational autoencoder: An unsupervised model for modeling and decoding fMRI activity in visual cortex. NeuroImage, 198: 125-136.
Shi, J., Wen, H., Zhang, Y., Han, K., & Liu, Z. (2018). Deep recurrent neural network reveals a hierarchy of process memory during dynamic natural vision. Human brain mapping, 39(5), 2269-2282.
Lynch, L. K., Lu, K. H., Wen, H., Zhang, Y., Saykin, A. J., & Liu, Z. (2018). Task‐evoked functional connectivity does not explain functional connectivity differences between rest and task conditions. Human brain mapping, 39(12), 4939-4948.
Zhang, Y., Chen, G., Wen, H., Lu, K. H., & Liu, Z. (2017). Musical imagery involves wernicke's area in bilateral and anti-correlated network interactions in musicians. Scientific reports, 7(1), 17066.
Wen, H., Shi, J., Zhang, Y., Lu, K. H., Cao, J., & Liu, Z. (2017). Neural encoding and decoding with deep learning for dynamic natural vision. Cerebral Cortex, 28(2): 4136-4160, 2018.
In preparation:
Zhang, Y., Leonard, M. K., Gwilliams, L., Bhaya-Grossman, I., Chang E.F. Word Extraction in Human Speech Cortex. (In preparation).
Zhang, Y., Han, K., Choi, M., & Liu, Z. Visually grounded word representations reveal principal semantic axes explaining conceptual organization in the human brain. (In preparation).
OHBM 2018 (Oral): Zhang, Y., Kim, J.H., Wen, H. & Liu, Z. High Gamma Electrocorticography in Superior Temporal Gyrus Represents Words During Natural Speech. Video / Purdue BME News
Deep Learning meets Neuroscience Lecture Series at Trinity College Dublin, organized by Cusack Lab (Invited talk, Nov 2020): Deep Learning for Encoding and Decoding Human Brain Activity during Natural Vision and Language Comprehension. Video