The word colloid is derived from Greek word κόλλᾰ, which means glue. Indeed, many soft, gooey substances can be categorized as colloidal suspensions.
I am broadly interested in the functional particles that are influenced by and adapt to the complex environment they are in, and how an understanding of these systems enables us to design functional soft materials.
Prior to my graduate study, I was an undergraduate researcher in Professor Matteo Pasquali's Group at Rice University measuring the conductivity of carbon nanotube films. I spent a summer at Nanyang Technological University hosted by Professor Mingfeng Wang, learning to synthesize conductive polymers. I also designed a microfluidic chip for Schlumberger as a summer intern.
I devoted my doctoral years to studying particle migration in nematic liquid crystals with Professor Kathleen J. Stebe at University of Pennsylvania. I studied how to guide the formation of reconfigurable patterns in structured fluids. This was achieved by using boundaries to mold the orientation of the molecules. You can find my thesis here.
I used to be a joint postdoc in the Groups of Professor Norman J. Wagner and Professor Eric M. Furst at University of Delaware. My work focused on tribological, rheological, and neutron scattering investigations of systems consisting of highly concentrated, surface-modified nanoparticles. Using these techniques, I spearheaded an effort to establish a unifying framework to test the frictional contact model and shear thickening in industrially relevant systems.
I am currently a joint postdoc in the Groups of Professor Megan T. Valentine and Professor Matthew E. Helgeson at UCSB. Last year I led the instrument and algorithm development fronts for microrheology and structure characterization to facilitate high-throughput material discovery within BioPACIFIC.
This year, I am pursuing my independent topics on cell-LC substrate interaction, with the generous support of Otis William Fellowship from the College of Engineering. My work aims at developing reduced systems to emulate the reciprocity between cells and ECM to facilitate new medical interference for vascular pathology.
Pre-prints:
20. Y. Luo, M. Gu, M. Park, X. Fang, Y. Kwon, J. M. Urueña, J. R. de Alaniz, M. E. Helgeson, M. C. Marchetti, M. T. Valentine, "Molecular-scale substrate anisotropy and crowding drive long-range nematic order of cell monolayers". arXiv:2210.13425.
Peer-Reviewed Publications:
19. T. Yao, Z. Kos, Q. Zhang, Y. Luo, F. Serra, E. B. Steager, M. Ravnik, K. J. Stebe, "Nematic colloidal micro-robotos as physically intelligent systems", Adv. Funct. Mat., 2022, DOI: 10.1002/adfm.202205546. arXiv: 2203.14150.
18. T. Yao, Z. Kos, Q. Zhang, Y. Luo, E.B. Steager, M. Ravnik, and K. J. Stebe, "Topological defect-propelled swimming of nematic colloids", Sci. Adv., 2022, 8, eabn8176. arXiv:2109.14584.
17. Y.-F. Lee, Y. Luo, T. Bai, S. C. Brown, and N. J. Wagner, "Microstructure of shear thickening colloidal suspensions determined by rheo-VSANS and Rheo-USANS'", Soft Matter, 2022, 18, 4325-4337.
16. Y. Luo, M. Gu, C. E. R. Edwards, M. T. Valentine, M. E. Helgeson, "High-throughput microscopy to determine morphology, microrheology, and phase boundaries applied to phase separating coacervates", Soft Matter, 2022, 18, 3063-3075.
15. M. Gu*, Y. Luo*, Y. He, M. E. Helgeson, M. T. Valentine, "Uncertainty quantification and estimation in differential dynamic microscopy", Phys. Rev. E, 2021,104,034610. arXiv: 2105.01200.
14. Y. -F. Lee, Y. Luo, T. Bai, C. Velez, S.C. Brown, and N. J. Wagner, "Microstructure and rheology of shear-thickening colloidal suspensions with varying interparticle friction: Comparison of experiment with theory and simulation models'', Phys. Fluids, 2021, 33, 033316. Featured Article.
13. Y. -F. Lee, Y. Luo, S. C. Brown, and N. J. Wagner, "Experimental test of a frictional contact model for shear thickening in concentrated colloidal suspensions'', J. Rheol., 2020, 64, 267-282.
12. Y. Luo, Y. -F. Lee, K. A. Dennis, C. Velez, S. C. Brown, E. M. Furst, and N. J. Wagner, "One-step, in-situ jamming point measurements by immobilization cell rheometry", Rheol. Acta, 2020, 59, 209–225
11. Y. Luo, T. Yao, F. Serra, D. A. Beller, and K. J. Stebe, "Deck the walls with anisotropic colloids in nematic liquid crystals", Langmuir, 2019, 3528, 9274-9285.
10. G. Boniello, Y. Luo, F. Serra, and K. J. Stebe, "Colloids in confined liquid crystals: a plot twist in the lock-and-key mechanism", Soft Matter, 2019, 15, 5220-5226.
9. Y. Luo, D. A. Beller, F. Serra, and K. J. Stebe, "Tunable colloid trajectories in nematic liquid crystals near wavy walls", Nat. Comm., 2018, 3841.
8. Y. Luo, F. Serra, and K. J. Stebe, "Experimental realization of the `lock-and-key' mechanism in liquid crystals", Soft Matter, 2016, 12, 6027-6032. Front Cover.
7. Y. Luo, F. Serra, D. A. Beller, M. A. Gharbi, N. Li, S. Yang, R. D. Kamien, and K. J. Stebe, "Around the corner: Colloidal assembly and wiring in groovy nematic cells", Phys. Rev. E, 2016, 93, 032705.
6. F. Mirri, N. Orloff, A. M. Forster, R. Ashkar, R. J. Headrick, E. A. Bengio, C. Long, A. Choi, Y. Luo, A. R. H. Walker, P. Butler, K. B. Migler, and M. Pasquali, "Lightweight, flexible, high-performance carbon nanotube cables made by scalable flow coating", ACS Appl. Mater. Interfaces, 2016, 8, 4903-4910.
5. D. E. Tsentalovich, A. W. K. Ma, J. A. Lee, N. Behabtu, E. A. Bengio, A. Choi, J. Hao, Y. Luo, R. J. Headrick, M. J. Green, Y. Talmon, and M. Pasquali, "Relationship of extensional viscosity and liquid crystalline transition to length distribution in carbon nanotube solutions", Macromolecules, 2016, 49, 681-689.
4. M. A. Gharbi*, I. B. Liu*, Y. Luo*, F. Serra, N. D. Bade, H.-N. Kim, X. Yu, S. Yang, R. D. Kamien and K. J. Stebe, "Smectic gardening on curved landscapes", Langmuir, 2015, 31, 11135-11142.
3. F. Serra, M. A. Gharbi, Y. Luo, I. B. Liu, N. D. Bade, R. D. Kamien, S. Yang and K. J. Stebe, "Curvature-driven, one-step assembly of reconfigurable smectic liquid crystal 'compound eye' lenses", Adv. Opt. Mat., 2015, 3, 1287-1292.
2. K. Wang, Y. Luo, S. Huang, H. Yang, B. Liu, and M. Wang, "Highly fluorescent polycaprolactones decorated with di(thiophene-2-yl)-diketopyrrolopyrrole: a covalent strategy of tuning properties in solid states", J. Polym. Sci. A Polym. Chem., 2015, 53, 1032-1042.
1. S. Huang, B. Liu, K. Wang, C. Yang, Y. Luo, Y. Zhang, B. Cao, Y. Kang and M. Wang, "Highly florescent and bioresorbable polymeric nanoparticles with enhanced photostability for cell imaging", Nanoscale, 2015, 7, 889-895.
* Equal contributions