https://drive.google.com/drive/folders/1zDCFwfkl0lgDG8x7L3q425MxMmUcqG0k?usp=sharing
2020年第一學期的期末報告 :
(1) 使用YOLO3, 進行硬幣種類辨識
(2) 使用YOLO3,分辨蘋果的品種
(3) 使用YOLO3, 進行手勢辨識達成指定命令
(4) 非監督式新聞主題名稱生成
(5) 使用YOLO3, 進行猜拳競賽
(6) 語音記帳機器人
(7) 使用YOLO3, 辨識手部動作
(8) 使用YOLO3, 辨識臉部表情
(9) Openpose辨識姿勢 - 提升用戶專注力
(10) COVID 19 ~ 利用CNN做肺炎檢測
(11) 運用 RNN 預測比特幣收盤價
(12) 使用音樂訊號, 判斷歌曲的演唱者
(13) 人工智慧辨識塗鴉
下載檔案: 01_20210113_人工智慧導論(B班)_期末報告.zip
https://drive.google.com/drive/folders/1ZXUJnJJSWO7VyKV41L9x1-sskbP-XwAg?usp=sharing
2021年第一學期的期末報告 :
(1) 野生貓科動物辨識
(2) Keras 網頁介紹
(3) 音樂產生器
(4) 透過GMCNN進行圖像修復
(5) 變臉是替身攻擊
(6) 雨量分析與預測
(7) 分析網路評論
(8) 深度學習音樂產生器
(9) 預測學生課業表現
(10) Scikit-Learn 網頁介紹
(11) GitHub 網站介紹
(12) Blazepose架構概論
(13) 臉部辨識
(14) 即時語音模仿
(15) 車牌辨識
下載檔案: 02_20220112_機器學習概論(B班)_期末報告.zip
https://drive.google.com/drive/folders/1ZXUJnJJSWO7VyKV41L9x1-sskbP-XwAg?usp=sharing
2022年第一學期的期末報告 :
(1) Forest Fire
(2) Skin Segmentation
(3) Bike Sharing Dataset
(4) 葡萄乾的分類
(5) 問答系統
(6) 使用YOLO辨識撲克牌
(7) 預測避孕法
(8) Bank Marketing
(9) 具有武器辨識
(10) 銷售額預測
(11) 機械學習K組種族分析
(12) 口音辨識
(13) 如何用大型自然語言模型
(14) 使用YOLO計算人數
(15) 判別蘑菇是否能夠食用
(16) 預測比特幣收盤價
下載檔案: 03_20221226_機器學習概論(B班)_期末報告.zip
https://drive.google.com/drive/folders/1ZXUJnJJSWO7VyKV41L9x1-sskbP-XwAg?usp=sharing
2023年第一學期的期末報告 :
(1) 第1組_使用YOLOV8_進行車牌辨識
(2) 心臟病發分析與預測
(3) 電池壽命預測
(4) 利用CNN實現人種辨識
(5) 利用CNN做垃圾分類
(6) 辨識是否戴口罩
(7) Company Bankruptcy Prediction
(8) 宵夜要吃什麼
(9) 恆星種類的分辨
(10) RESNET垃圾自動分類系統
(11) 糖尿病的特徵預測
(12) 辨識狗是否跳上沙發及未來發展
(13) 黑白猜
(14) 使用YOLO8進行英文字母辨識
(15) 基於CNN之手勢辨識
(16) 使用YOLOv8進行工地檢測
下載檔案: 04_20221226_機器學習概論(B班)_期末報告.zip
https://drive.google.com/drive/folders/1ZXUJnJJSWO7VyKV41L9x1-sskbP-XwAg?usp=sharing
2024年第一學期的期末報告 :
(1) 太陽能發電預測
(2) 自動垃圾分類
(3) 手勢人機互動系統
(4) 這天氣該穿甚麼好呢
(5) Cleaned vs Dirty
(6) 驗證碼辨識
(7) 使用CNN進行剪刀石頭布之手勢辨識
(8) 手機使用與使用者行為分類
(9) 結合D-Fire資料與深度學習技術 提升火災預測能力
(10) A Simple Hawk-eye system implementation
(11) 表情識別
(12) Fine-Tuning SAM for Breast Tumor Segmentation Using Ultrasound Images
下載檔案: 05_20241225_機器學習概論(B班)_期末報告.zip
https://drive.google.com/drive/folders/1ZXUJnJJSWO7VyKV41L9x1-sskbP-XwAg?usp=sharing
下載投影片和程式 :
https://drive.google.com/drive/folders/1zDCFwfkl0lgDG8x7L3q425MxMmUcqG0k?usp=sharing
0. 關於這門課
https://www.youtube.com/watch?v=XYGhcLMZCOI&list=PLYgGtiVoYLPcLDi-vW02DnSqmD6e6m6lL&index=1
1. 前言和歷史
https://www.youtube.com/watch?v=4BBhlJvVQac&list=PLYgGtiVoYLPcLDi-vW02DnSqmD6e6m6lL&index=2
2. 原理
https://www.youtube.com/watch?v=iGhsZk9wE0I&list=PLYgGtiVoYLPcLDi-vW02DnSqmD6e6m6lL&index=3
3. 應用和程式
https://www.youtube.com/watch?v=q4eYj7TS-iA&list=PLYgGtiVoYLPcLDi-vW02DnSqmD6e6m6lL&index=4
4. 未來發展
https://www.youtube.com/watch?v=oNsb83Va_sM&list=PLYgGtiVoYLPcLDi-vW02DnSqmD6e6m6lL&index=5
https://www.youtube.com/watch?v=3_NQFxuJ4ow&list=PLYgGtiVoYLPdHNmslnjXuF9gjCIj3g-F3&index=1
https://www.youtube.com/watch?v=LrYKfPfwYNQ&list=PLYgGtiVoYLPdHNmslnjXuF9gjCIj3g-F3&index=2
https://cloud.tencent.com/developer/article/2186579
莫烦 Python: 1 numpy & pandas 有什么用? (教学教程)
https://www.youtube.com/watch?v=To3YL92HZyc&list=PLXO45tsB95cKKyC45gatc8wEc3Ue7BlI4
彭彭的課程: Matplotlib 簡介、安裝、快速開始 - Python 資料視覺化教學課程
https://www.youtube.com/watch?v=MceOR4Kvv9I&list=PL-g0fdC5RMbqDdag2l_F3ejf4xQ_QjGbq
讓 8 歲小孩也會寫程式,OpenAI、a16z 投資的 AI 神器 Cursor 是什麼?
https://www.youtube.com/watch?v=1PC3etgLwVc&list=PLXO45tsB95cIRP5gCi8AlYwQ1uFO2aQBw
https://www.youtube.com/watch?v=cplezXd-W14&list=PLYgGtiVoYLPdHNmslnjXuF9gjCIj3g-F3&index=3
https://www.youtube.com/watch?v=BuaX3wa4v28&list=PLYgGtiVoYLPdHNmslnjXuF9gjCIj3g-F3&index=4
https://www.youtube.com/watch?v=xNFbbNeIDVo&list=PLYgGtiVoYLPdHNmslnjXuF9gjCIj3g-F3&index=5
https://www.youtube.com/watch?v=Je-oCFw059A&list=PLYgGtiVoYLPdHNmslnjXuF9gjCIj3g-F3&index=6
https://www.youtube.com/watch?v=Dunh6Rs-VKI&list=PLYgGtiVoYLPdHNmslnjXuF9gjCIj3g-F3&index=7
https://www.youtube.com/watch?v=LrYKfPfwYNQ&list=PLYgGtiVoYLPdHNmslnjXuF9gjCIj3g-F3&index=2
https://www.youtube.com/watch?v=75LI9MI9eEo
https://learnopencv.com/ultralytics-yolov8/
https://www.youtube.com/watch?v=ZUhRZ9UTkIM
https://www.youtube.com/watch?v=mrkksUOW-BQ&list=PLYgGtiVoYLPdHNmslnjXuF9gjCIj3g-F3&index=15
2024-GS-4519-AI-course
https://www.kaggle.com/datasets
https://paperswithcode.com/datasets
https://physionet.org/about/database/
https://www.youtube.com/watch?v=ZUhRZ9UTkIM
程式在: NCUAI_20230903\人工智慧概論\3_Keras_experiment\Keras_1_Iris\code\Keras_01_Iris.ipynb
投影片在: NCUAI_20230903\人工智慧概論\1_PDF_Lecture_Note\AI_06_Keras_Iris.pdf
投影片在: NCUAI_20230903\人工智慧概論\1_PDF_Lecture_Note\AI_01_什麼是人工智慧.pdf
https://www.youtube.com/watch?v=vllpguGZwUY&list=PLYgGtiVoYLPdHNmslnjXuF9gjCIj3g-F3&index=11
https://www.youtube.com/watch?v=dtMkhsiVNFA&list=PLYgGtiVoYLPdHNmslnjXuF9gjCIj3g-F3&index=13
程式在: NCUAI_20230903\人工智慧概論\3_Keras_experiment\Keras_1_Iris\code\iris_cross_validation.ipynb
投影片在: NCUAI_20230903\人工智慧概論\1_PDF_Lecture_Note\AI_07_OverFitting_CrossValidation.pdf
https://www.youtube.com/watch?v=lexI-3wehyc&list=PLYgGtiVoYLPdHNmslnjXuF9gjCIj3g-F3&index=14
程式在: NCUAI_20230903\人工智慧概論\3_Keras_experiment\Keras_1_Iris\code\Keras_02_iris_save_model_weights
投影片在: NCUAI_20230903\人工智慧概論\1_PDF_Lecture_Note\AI_09_Save_Load_Model_Parameters.pdf
程式在: NCUAI_20230903\Python_20210720\ml_toturial-master
程式檔案在此: https://github.com/pyinvest/ml_toturial
PyInvest
https://pyecontech.com/category/py%e9%87%91%e8%9e%8d%e6%99%82%e4%ba%8b/
初學者的Python金融分析日記
https://www.youtube.com/watch?v=df_zDnFGxmU&list=PLy7MS-q4l3xD8Q_T_J_qIj6cwfOdf-YTs
PyInvest - Video
https://www.youtube.com/watch?v=HrQiqjPO5f8&list=PLy7MS-q4l3xAAQGLoZNAuOFjTX0bWYFgN
https://www.youtube.com/watch?v=DeFIGJu6tbY&list=PLy7MS-q4l3xDYoR8MACYA3YyidUbEiz6j&index=1
程式檔案在此:
https://github.com/pyinvest/quant_basic_toturial/tree/master/quant
https://www.youtube.com/watch?v=eurwX_f9r08&list=PLYgGtiVoYLPdHNmslnjXuF9gjCIj3g-F3&index=16
程式在: NCUAI_20230903\人工智慧概論\3_Keras_experiment\Keras_2_Cancer\code\Keras_02_Breast_Cancer.ipynb
投影片在: NCUAI_20230903\人工智慧概論\1_PDF_Lecture_Note\AI_07_OverFitting_CrossValidation.pdf
EDA, 補充教材: [Day09] 機器學習的七大步驟-細節
from sklearn.metrics import classification_report, accuracy_score, precision_score, recall_score, f1_score, roc_auc_score
https://www.youtube.com/watch?v=YbmEyJpx7xk&list=PLYgGtiVoYLPdHNmslnjXuF9gjCIj3g-F3&index=31
程式在: NCUAI_20230903\Python_20210803\mnist-deep-neural-network-with-keras.ipynb
程式在: NCUAI_20230903\Python_20210803\mnist-deep-neural-network-with-keras-revision.ipynb
https://www.youtube.com/watch?v=ItFJFOO5l4w&list=PLYgGtiVoYLPdHNmslnjXuF9gjCIj3g-F3&index=19
* MNIST - Deep Neural Network with Keras, by Prashant Banerjee
程式在: NCUAI_20230903\Python_20210803\Load_MNIST_DataSet_001.py
程式在: NCUAI_20230903\Python_20210803\Keras_06_SimpleConvMNIST_001.py
https://www.youtube.com/watch?v=I3kLFT3FdXs&list=PLYgGtiVoYLPdHNmslnjXuF9gjCIj3g-F3&index=20
程式在: NCUAI_20230903\Python_20210803\cifar-10-image-classification-with-cnn-Revision.ipynb
https://www.youtube.com/watch?v=xbVI2xXhnmc&list=PLYgGtiVoYLPdHNmslnjXuF9gjCIj3g-F3&index=21
https://www.kaggle.com/bhuvanchennoju/cifar-10-image-classification-with-cnn
程式在: 人工智慧概論\3_Keras_experiment\Keras_5_CIFAR10\code\code\Keras_Cifar10_CNN.ipynb
https://www.youtube.com/watch?v=mCstycWD3js&list=PLYgGtiVoYLPcLDi-vW02DnSqmD6e6m6lL&index=25
https://www.youtube.com/watch?v=0v1Z9Lz1Va0&list=PLYgGtiVoYLPdHNmslnjXuF9gjCIj3g-F3&index=22
https://www.youtube.com/watch?v=YbmEyJpx7xk&list=PLYgGtiVoYLPdHNmslnjXuF9gjCIj3g-F3&index=31
How to save the best model in a trainning loop
Keras_Mnist_MLP_Save_Best.ipynb
https://drive.google.com/drive/folders/1zDCFwfkl0lgDG8x7L3q425MxMmUcqG0k?usp=sharing
from tensorflow.keras.callbacks import ModelCheckpoint
from tensorflow.keras.models import load_model
from tensorflow.keras.utils import to_categorical
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
batch_size = 32 # Number of samples per gradient update
accuracy_old = 0 # Initialize the previous best accuracy
for i in range(0, 3): # Loop for 3 iterations
checkpoint = ModelCheckpoint('..\ModelSaved\model.keras', monitor='val_accuracy', verbose=1, save_best_only=True) # Save the best model based on validation accuracy
train_history = model.fit(x_Train_normalize, y_Train_OneHot, validation_data=(x_Test_normalize, y_Test_OneHot), epochs=2, batch_size=batch_size, callbacks=[checkpoint], verbose=1) # Train the model
model = load_model('..\ModelSaved\model.keras') # Load the best model
predictions = model.predict(x_Test_normalize) # Make predictions on test data
predicted_classes = np.argmax(predictions, axis=1) # Convert predictions to class labels
predicted_one_hot = to_categorical(predicted_classes, num_classes=predictions.shape[1]) # Convert class labels to one-hot encoded format
accuracy_new = accuracy_score(y_Test_OneHot, predicted_one_hot) # Calculate accuracy
if (accuracy_new > accuracy_old): # Check if the new accuracy is better
outfile = '..\ModelSaved\MLP_' + str(int(10000*accuracy_new)) + '.keras' # Generate a filename for the model
model.save(outfile) # Save the model
print(accuracy_old, accuracy_new)
accuracy_old = accuracy_new # Update the previous best accuracy
loss, acc = model.evaluate(x_Test_normalize, y_Test_OneHot, batch_size=batch_size) # Evaluate the model
print("========================================================")
print("| model saved in:", outfile)
print("| Test accuracy: %.4f%% " % (100.0 * acc))
print("========================================================\n")
程式在: NCUAI_20230903\Python_20210810\Keras_10_ResNet50_001.ipynb
https://www.youtube.com/watch?v=it4fjd_2hUU&list=PLYgGtiVoYLPdHNmslnjXuF9gjCIj3g-F3&index=23
https://keras.io/api/applications/#usage-examples-for-image-classification-models
https://www.youtube.com/watch?v=PL043XfWRac&list=PLYgGtiVoYLPdHNmslnjXuF9gjCIj3g-F3&index=24
https://keras.io/examples/vision/autoencoder/
https://www.youtube.com/watch?v=wor-nXI3OQE&list=PLYgGtiVoYLPdHNmslnjXuF9gjCIj3g-F3&index=25
https://keras.io/examples/vision/3D_image_classification/
程式在: NCUAI_20230903\人工智慧概論\3_Keras_experiment\Keras_3_Stock\code\Keras_03_Stock.ipynb
投影片在: NCUAI_20230903\人工智慧概論\1_PDF_Lecture_Note\AI_11_Keras_Stock.pdf
https://www.youtube.com/watch?v=u4b5fyg4X2M&list=PLYgGtiVoYLPdHNmslnjXuF9gjCIj3g-F3&index=17
https://www.youtube.com/watch?v=LBD6jQydzKM&list=PLYgGtiVoYLPdHNmslnjXuF9gjCIj3g-F3&index=18
A Historical Journey: Large Language Models (LLMs) from LSTMs to ChatGPT
Transformer Neural Networks: A Step-by-Step Breakdown
https://builtin.com/artificial-intelligence/transformer-neural-network?form=MG0AV3
Neural machine translation with a Transformer and Keras
https://www.tensorflow.org/text/tutorials/transformer?form=MG0AV3
Building a Transformer with PyTorch
https://www.datacamp.com/tutorial/building-a-transformer-with-py-torch?form=MG0AV3
Open AI 出現最大競爭對手 世界周報MIT採訪人工智慧中心主任
程式在: NCUAI_20230903\Python_20210810\TransferLearning_ShoulderImplants\code
https://www.youtube.com/watch?v=3x2YGfnaoXI&list=PLYgGtiVoYLPdHNmslnjXuF9gjCIj3g-F3&index=26
https://archive.ics.uci.edu/dataset/517/shoulder+implant+x+ray+manufacturer+classification
#from keras.applications.resnet50 import ResNet50
#from keras import Model, layers
#from keras.layers import InputLayer
from tensorflow.keras.applications.resnet50 import ResNet50
from tensorflow.keras import Model, layers
from tensorflow.keras.layers import InputLayer
https://towardsdatascience.com/manipulating-facial-features-with-opencv-and-dlib-14029f136a3d
https://drive.google.com/drive/folders/1zDCFwfkl0lgDG8x7L3q425MxMmUcqG0k?usp=sharing
PaDiM: a Patch Distribution Modeling Framework for Anomaly Detection and Localization
https://arxiv.org/abs/2011.08785
xiahaifeng1995/PaDiM-Anomaly-Detection-Localization-master
https://github.com/xiahaifeng1995/PaDiM-Anomaly-Detection-Localization-master
-------------------------------------------------------------
PaDiM 原理与代码解析
https://blog.csdn.net/ooooocj/article/details/127601035
PaDiM : A machine learning model for detecting defective products without retraining
modification in main_01.py:
replace: def parse_args():
add: debug_a = 'Y'
add: class_name = 'bottle', print(class.name)
comment out: the program in class_name loop
modification in mvtec.py:
replace: dataset_path='./dataset_mvtec'
replace: Image.LANCZOS
--------------------------
modification in main_02.py:
un-comment: the program in class_name loop
re-arrange: move the functions before the main program
--------------------------
modification in main_03.py:
add comments and print the values of layer.shape and B, C, H, W
https://www.youtube.com/watch?v=WJ5LM27LpDw&list=PLYgGtiVoYLPdHNmslnjXuF9gjCIj3g-F3&index=27
https://www.youtube.com/watch?v=OdYJ9gdXVWU&list=PLYgGtiVoYLPdHNmslnjXuF9gjCIj3g-F3&index=28
https://drive.google.com/drive/u/2/folders/1o7u9yEnRE4FmPDbUwwGV2bu0lX_lDHeI
https://www.youtube.com/watch?v=zhujHoUZfKA&list=PLYgGtiVoYLPdHNmslnjXuF9gjCIj3g-F3&index=29
https://www.youtube.com/watch?v=vmt5miwXqTI&list=PLYgGtiVoYLPdHNmslnjXuF9gjCIj3g-F3&index=30
英文教科書 : https://d2l.ai/d2l-en.pdf
中文教科書 : https://zh-v2.d2l.ai/d2l-zh.pdf
https://ithelp.ithome.com.tw/articles/10251599
book ==> https://www.amazon.com/Deep-Reinforcement-Learning-Hands-optimization/dp/1838826998
code ==> https://github.com/PacktPublishing/Deep-Reinforcement-Learning-Hands-On-Second-Edition
https://towardsdatascience.com/reinforcement-learning-implement-tictactoe-189582bea542
Lasso Regression with Python
https://www.kirenz.com/post/2019-08-12-python-lasso-regression-auto/
处理不均衡数据 (深度学习)! Dealing with imbalanced data (deep learning) (3:18)
https://www.youtube.com/watch?v=doXeC9_vMhg
Handling Imbalanced Datasets in Deep Learning ==> Class weight, over and under sampling
https://towardsdatascience.com/handling-imbalanced-datasets-in-deep-learning-f48407a0e758
Deep learning unbalanced training data? Solve it like this. ==> Image augmentation
How to Configure Image Data Augmentation in Keras ==> Image augmentation
Image data preprocessing
https://keras.io/api/preprocessing/image/
ImageDataGenerator的使用