*: 査読付き。
^: 副専攻。
原著論文
[*5] Yamada, T. (2024), `Wright's First-Order Logic of Strict Finitism', in Studia Logica, [pages to be assigned], https://doi.org/10.1007/s11225-024-10137-x. [Preprint in arXiv]
[Abstract] A classical reconstruction of Wright’s first-order logic of strict finitism is presented. Strict finitism is a constructive standpoint of mathematics that is more restrictive than intuitionism. Wright sketched the semantics of said logic in Wright (Realism, Meaning and Truth, chap 4, 2nd edition in 1993. Blackwell Publishers, Oxford, Cambridge, pp.107-75, 1982), in his strict finitistic metatheory. Yamada (J Philos Log. https://doi.org/10.1007/s10992-022-09698-w, 2023) proposed, as its classical reconstruction, a propositional logic of strict finitism under an auxiliary condition that makes the logic correspond with intuitionistic propositional logic. In this paper, we extend the propositional logic to a first-order logic that does not assume the condition. We will provide a sound and complete pair of a Kripke-style semantics and a natural deduction system, and show that if the condition is imposed, then the logic exhibits natural extensions of Yamada (2023)’s results.
[*4] Yamada, T. (2023), `Wright's Strict Finitistic Logic in the Classical Metatheory: The Propositional Case', in The Journal of Philosophical Logic, 52, 1081–1100, https://doi.org/10.1007/s10992-022-09698-w. [Preprint in arXiv]
[Abstract] Crispin Wright in his 1982 paper argues for strict finitism, a constructive standpoint that is more restrictive than intuitionism. In its appendix, he proposes models of strict finitistic arithmetic. They are tree-like structures, formed in his strict finitistic metatheory, of equations between numerals on which concrete arithmetical sentences are evaluated. As a first step towards classical formalisation of strict finitism, we propose their counterparts in the classical metatheory with one additional assumption, and then extract the propositional part of ‘strict finitistic logic’ from it and investigate. We will provide a sound and complete pair of a Kripke-style semantics and a sequent calculus, and compare with other logics. The logic lacks the law of excluded middle and Modus Ponens and is weaker than classical logic, but stronger than any proper intermediate logics in terms of theoremhood. In fact, all the other well-known classical theorems are found to be theorems. Finally, we will make an observation that models of this semantics can be seen as nodes of an intuitionistic model.
[*3] 山田貴裕「二つの実在論 ――「世界観」の観点からの分析――」『哲学論叢』京都大学哲学論叢刊行会、第 39 号、2012 年 11 月 1 日、pp.98-109。【リポジトリ】
[^2] 山田貴裕「プレイスタイルの裏切り ――ゲームとプレイの哲学――」『Prospectus』京都大学文学部哲学研究室紀要、第 15 号、2012 年、pp.13-24。【リポジトリ】
[*1] 山田貴裕「反実在論にとっての「真理値リンク」問題」『中部哲学会年報』中部哲学会、第 42 号、2010 年、pp.65-80。
和訳
[^1] 川谷茂樹、○山田貴裕『キリギリスの哲学 ――ゲームプレイと理想の人生――』ナカニシヤ出版、2015 年。[原著:Bernard Suits, The Grasshopper: Games, Life and Utopia, first published by University of Toronto Press in 1978, reprinted with the Introduction by Thomas Hurkaby Broadview Press in 2005。但し、Thomas Hurka による Introduction を除く。]【出版社】
サーベイ論文
[2] 山田貴裕「証言の認識論――還元主義と反還元主義」『哲学論叢』京都大学哲学論叢刊行会、第 37 号別冊、2010 年 11 月 1 日、pp.61-72。【リポジトリ】
[1] 山田貴裕「反実在論と「真理値リンク」問題」『哲学論叢』京都大学哲学論叢刊行会、第 37 号別冊、2010 年 11 月 1 日、pp.49-60。【リポジトリ】
その他
[^1] Kawatani, S. and Yamada, T. (2019), `On the Japanese Translation of Bernard Suits, The Grasshopper: Games, Life and Utopia: キリギリスの哲学―ゲームプレイと理想の人生 (Romanization: kirigirisu no tetsugaku―gēmupurei to risō no jinsei. Lit.: The Philosophy of the Grasshopper: Game-playing and the ideal life})', in: Sport, Ethics and Philosophy, vol.13, issue 3-4, pp.471-6, DOI: 10.1080/17511321.2019.1614974. [Publisher]