山川雄也(Yuya Yamakawa)


東京都立大学 経済経営学部 准教授


住所 : 〒192-0397 東京都八王子市南大沢1-1

居室 : 南大沢キャンパス 3号館231号室

Email : yuya (at) tmu.ac.jp

【研究キーワード】

- 非線形最適化問題

リーマン多様体上の最適化問題

- 最適制御問題

偏微分方程式制約付き最適化問題

- 内点法

- 逐次二次計画法

- 拡張ラグランジュ法

レベンバーグ・マルカート法

【所属学会】

- 日本オペレーションズ・リサーチ学会

- 日本応用数理学会

【研究成果】

​査読付き論文

[12] H. Matsui, K. Yamamoto, and Y. Yamakawa, "Sparse estimation in kriging for functional data", Stochastic Environmental Research and Risk Assessment, to appear.

[11] Y. Yamakawa and N. Yamashita, "Convergence analysis of a regularized Newton method with generalized regularization terms for unconstrained convex optimization problems", Applied Mathematics and Computation, Vol. 491, p. 129219, (2025). (https://www.sciencedirect.com/science/article/pii/S0096300324006805)

[10] S. Ariizumi, Y. Yamakawa, and N. Yamashita, "Convergence properties of Levenberg-Marquardt methods with generalized regularization terms", Applied Mathematics and Computation, Vol. 463, p. 128365, (2024).

[9] Y. Yamakawa, T. Ikegami, E. H. Fukuda, and N. Yamashita, "An equivalent nonlinear optimization model with triangular low-rank factorization for semidefinite programs", Optimization Methods and Software, Vol. 38, No. 6, pp. 1296-1310, (2023).

[8] Y. Yamakawa, "A stabilized sequential quadratic programming method for optimization problems in function spaces", Numerical Functional Analysis and Optimization, Vol. 44, No. 9, pp. 867-905, (2023).

[7] K. Okabe, Y. Yamakawa, and E. H. Fukuda, "A revised sequential quadratic semidefinite programming method for nonlinear semidefinite optimization", Journal of Industrial and Management Optimization, Vol. 19, No. 10, pp. 7777-7794, (2023).

[6] A. Hori, Y. Yamakawa, and N. Yamashita, "Distributionally Robust Expected Residual Minimization for Stochastic Variational Inequality Problems", Optimization Methods and Software, Vol. 38, No. 4, pp. 756-780, (2023).

[5] Y. Yamakawa and T. Okuno, "A stabilized sequential quadratic semidefinite programming method for nonlinear semidefinite programming problems", Computational Optimization and Applications, Vol. 83, No. 3, pp. 1027-1064, (2022).

​[4] Y. Yamakawa and H. Sato, "Sequential optimality conditions for nonlinear optimization on Riemannian manifolds and a globally convergent augmented Lagrangian method", Computational Optimization and Applications, Vol. 81, No. 2, pp. 397-421, (2022).

​[3] Y. Yamakawa and N. Yamashita, "A block coordinate descent method for a maximum likelihood estimation problems of mixture distributions", Pacific Journal of Optimization, Vol. 11, No. 4, pp. 669-686, (2015).

[2] Y. Yamakawa and N. Yamashita, "A differentiable merit function for shifted perturbed Karush-Kuhn-Tucker conditions of the nonlinear semidefinite programming", Pacific Journal of Optimization, Vol. 11, No. 3, pp. 557-579, (2015).

[1] Y. Yamakawa and N. Yamashita, "A two-step primal-dual interior point method for nonlinear semidefinite programming problems and its superlinear convergence", Journal of the Operations Research Society of Japan, Vol. 57, No. 3-4, pp. 105-127, (2014).


査読なし論文等

[4] Y. Yamakawa, "Local convergence analysis of a stabilized sequential quadratic programming method for optimization problems in Banach spaces", arXiv preprint, https://arxiv.org/abs/2503.11998.

[3] H. Li, Y. Yamakawa, E.H. Fukuda, and N. Yamashita, "A strong second-order sequential optimality condition for nonlinear programming problems", arXiv preprint, https://arxiv.org/abs/2503.01430.

[2] Y. Yamakawa, H. Sato, and K. Aihara, "Modified Armijo line-search in Riemannian optimization with reduced computational cost", arXiv preprint, https://arxiv.org/abs/2304.02197.

[1] Y. Yamakawa, "Superlinear and quadratic convergence of a stabilized sequential quadratic semidefinite programming method for nonlinear semidefinite programming problems", arXiv preprint, https://arxiv.org/abs/2210.17169.


・特許

[1] 山川雄也,落合勝博,“降雨量予測装置,降雨量予測方法,および記録媒体”,特許6874770号,2021年4月26日.

[2] 山川雄也,落合勝博,“シミュレーション装置,シミュレーション方法及びプログラム”,特許6819692号,2021年1月6日.

[3] 山川雄也,“センサ設置支援装置,データ処理装置,センサ設置支援方法及びプログラム”,特許6701839号,2020年5月11日.