HCMC Fellow at KIAS
HCMC Fellow at KIAS
Research Interest
Regularity theory for elliptic and parabolic PDEs
Contact : wontae@kias.re.kr or kim.wontae.pde@gmail.com
Visiting Address : 8315 (3rd floor), Bldg 8, 85, Hoegi-ro, Dongdaemun-gu, Seoul, Republic of Korea
Google Scholar : Link
MathSciNet : Link
CV : Link
Existence, uniqueness and regularity for elliptic p-Laplace systems with complex coefficients, with M. Vestberg / arXiv (2025)
Calderón-Zygmund type estimate for the singular parabolic double-phase system, to appear in J. Math. Anal. Appl. / arXiv (2024).
Hölder regularity for degenerate parabolic double-phase equations, with K. Moring and L. Särkiö, J. Differ. Equ. 434 (2025) 113231/ arXiv (2024).
Calderón-Zygmund type estimate for the parabolic double-phase system, to appear in Ann. Sc. Norm. Super. Pisa / arXiv (2023).
Lipschitz truncation method for parabolic double-phase systems and applications, with J. Kinnunen and L. Särkiö, J. Funct. Anal. 288 (2025), Paper No.110738 / arXiv (2023).
Gradient higher integrability for singular parabolic double-phase systems, with L. Särkiö, NoDEA 31(2024), no.3, Paper No. 40. / arXiv (2023).
On the regularity theory for mixed anisotropic and nonlocal p-Laplace equations and its applications to singular problems, with P. Garain and J. Kinnunen, Forum Math., 36 (2024), no. 3, 697-715. / arXiv (2023).
Gradient higher integrability for degenerate parabolic double-phase systems, with J. Kinnunen and K. Moring, Arch. Ration. Mech. Anal., 247(5):79, 2023. / arXiv (2022).
Self-improving properties of very weak solutions to double phase systems, with S. Baasandorj and S-S. Byun, Trans. Amer. Math. Soc., 376 (2023), 8733-8768. / arXiv (2022).
Estimates for the p-Laplacian type operator in the subcritical Sobolev exponent range, with S-S. Byun and M. Heo, Math. Nachr., 296 (2023), no. 4, 1404-1419.
Global Calderon-Zygmund estimate for p-Laplacian parabolic system, with S-S. Byun, Math. Ann., 383 (2022), no. 1-2, 77-118.
Partial existence result for homogeneous quasilinear parabolic problems beyond the duality pairing, with K. Adimurthi and S-S. Byun, Calc. Var. Partial. Differ. Equ., 61 (2022), no. 4, Paper No. 159.
Higher integrability near the initial boundary for nonhomogeneous parabolic systems of p-Laplacian type, with S-S. Byun and M. Lim, Forum Math., 32 (2020), no. 6, 1539-1559.
2020. Oct: KMS Annual Meeting, Elliptic and Parabolic PDEs with Applications session
2024. Jan: Finnish MathDays24, Geometric analysis and PDEs session
2024. May: Mittag-Leffler Institute, Workshop on Nonlinear Parabolic PDEs
2025. Feb: Erwin Schrödinger International Institute, Degenerate and Singular PDEs