Articles publiés
[1] Alquier, P. and Kengne, W. : Minimax optimality of deep neural networks on dependent data via PAC-Bayes bounds.
Electronic Journal of Statistics 19, (2025), 5895-5924, https://doi.org/10.1214/25-EJS2475 .
[2] Kengne, W. and Wade, M. : Deep learning from strongly mixing observations: Sparse-penalized regularization and minimax optimality.
Journal of Complexity (2025), https://doi.org/10.1016/j.jco.2025.101978 .
[3] Diop, M. L. and Kengne, W. : Statistical learning for ψ-weakly dependent processes.
Statistical Inference for Stochastic Processes (2025), https://doi.org/10.1007/s11203-025-09329-6 .
[4] Kengne, W. and Wade, M. : Robust deep learning from weakly dependent data.
Neural Networks (2025), https://doi.org/10.1016/j.neunet.2025.107227 .
[5] Kengne, W. : Excess Risk Bound for Deep Learning Under Weak Dependence.
Mathematical Methods in the Applied Sciences (2025), https://doi.org/10.1002/mma.10719 .
[6] Kengne, W. and Wade, M. : Sparse-penalized deep neural networks estimator under weak dependence.
Metrika (2024), https://doi.org/10.1007/s00184-024-00965-1 .
[7] Kengne, W. and Wade, M. : Deep learning for ψ-weakly dependent processes.
Journal of Statistical Planning and Inference (2024), https://doi.org/10.1016/j.jspi.2024.106163.
[8] Bardet, J.-M. , Kamila, K. and Kengne, W. : Efficient and Consistent Data-Driven Model Selection for Time Series.
Bernoulli 29, (2023), 2652-2690.
[9] Diop, M. L. and Kengne, W. : Density Power Divergence Estimator for General Integer-Valued Time Series with Exogenous Covariates.
Communications in Mathematics and Statistics (2023), https://doi.org/10.1007/s40304-023-00351-9.
[10] Diop, M. L. and Kengne, W. : Epidemic change-point detection in general integer-valued time series.
Journal of Applied Statistics (2023), https://doi.org/10.1080/02664763.2023.2179567.
[11] Kengne, W. : On consistency for time series model selection.
Statistical Inference for Stochastic Processes (2022), https://doi.org/10.1007/s11203-022-09284-6.
[12] Diop, M. L. and Kengne, W. : A general procedure for change-point detection in multivariate time series.
TEST, (2022), https://doi.org/10.1007/s11749-022-00824-z.
[13] Diop, M. L. and Kengne, W. : Inference and model selection in general causal time series with exogenous covariates.
Electronic Journal of Statistics 16, (2022), 116-157.
[14] Kengne, W. and Ngongo I. S. : Inference for nonstationary time series of counts with application to change-point problems.
Annals of the Institute of Statistical Mathematics, (2022), https://doi.org/10.1007/s10463-021-00815-1.
[15] Diop, M. L. and Kengne, W. : Consistent model selection procedure for general integer-valued time series .
Statistics, (2022), https://doi.org/10.1080/02331888.2022.2029861.
[16] Diop, M. L. and Kengne, W. : Epidemic change-point detection in general causal time series.
Statistics & Probability Letters, (2022), https://doi.org/10.1016/j.spl.2022.109416.
[17] Diop, M. L. and Kengne, W. : Poisson QMLE for change-point detection in general integer-valued time series models.
Metrika 85, (2022), 373–403.
[18] Diop, M. L. and Kengne, W. : Piecewise autoregression for general integer-valued time series.
Journal of Statistical Planning and Inference 211, (2021), 271-286.
[19] Kengne, W. : Strongly consistent model selection for general causal time series.
Statistics & Probability Letters 171, (2021), https://doi.org/10.1016/j.spl.2020.109000.
[20] Bardet, J.-M. , Kamila, K. and Kengne, W. : Consistent model selection criteria and goodness-of-fit test for common time series models.
Electronic Journal of Statistics 14, (2020), 2009-2052.
[21] Diop, M. L. and Kengne, W. : Testing parameter change in general integer-valued time series.
Journal of Time Series Analysis 38, (2017), 880-894.
[22] Kengne, W. : Sequential change-point detection in Poisson autoregressive models.
Journal de la société française de statistique 156, (2015), 98-112.
[23] Doukhan, P. and Kengne, W. : Inference and testing for structural change in general Poisson autoregressive models.
Electronic Journal of Statistics 9, (2015), 1267-1314.
[24] Bardet, J.-M. and Kengne, W. : Monitoring procedure for parameter change in causal time series.
Journal of Multivariate Analysis 125, (2014), 204–221.
[25] Bardet, J.-M. , Kengne, W. and Wintenberger, O. : Detecting multiple change-points in general causal time series using penalized quasi-likelihood.
Electronic Journal of Statistics 6, (2012), 435-477.
[26] Kengne, W. : Testing for parameter constancy in general causal time series models.
Journal of Time Series Analysis 33, (2012), 503-518.
[27] Kengne, W. : A test for parameter change in general causal time series using quasi-likelihood estimator.
C. R. Acad. Sci. Paris, Ser. I 350 (2012), 307–312.
Prépublications
[1] Kengne, W. and Wade, M. : Penalized deep neural networks estimator with general loss functions under weak dependence (submitted).
[2] Kengne, W. and Wade, M. : A general framework for deep learning (submitted).