Publications

63. Stretching Bonds Without Breaking Symmetries in Density Functional Theory, Y. Shi, Y. Shi, and A. Wasserman, J. Phys. Chem. Lett. 15, 826 (2024). [link

62. Strong Electron Correlation from Partition Densisty Functional Theory, Y. Shi, Y. Shi, and A. Wasserman, J. Chem. Phys. 159, 224108 (2023). [link]

61. Seven Useful Questions in Density Functional Theory, S. Crisostomo, R. Pederson, J. Kozlowski, B. Kalita, A.C. Cancio, K. Datchev, A. Wasserman, S. Song, and K. Burke, Lett. Math. Phys. 113, 42 (2023). [link]

60. pyCADMium: Chemical Atoms in Diatomic Molecules. A prolate spheroidal Python module for embedding calculations. V.H. Chávez, J. Nafziger, and A. Wasserman, Journal of Open Source Software JOSS 7, 4459 (2022). [link]

59. Split electrons in Partition Density Functional Theory. K. Zhang and A. Wasserman, J. Chem. Phys. 156, 224113 (2022). [link]

58. n2v: A density-to-potential inversion suite. A sandbox for creating, testing, and benchmarking density functional inversion methods. Y. Shi, V. Chávez, and A. Wasserman, WIREs Comput Mol Sci. e1617 (2022). [link

57. Inverse Kohn-Sham Density Functional Theory: Progress and Challenges. Shi, Y, Wasserman A., J. Phys. Chem. Lett. 12, 5308 (2021). [link

56. Using quantum annealers to calculate ground-state properties of molecules. Copenhaver J., Wasserman A., and Wehefritz-Kaufmann. M., J. Chem. Phys. 154, 034105 (2021). [link]

55. Quantum embedding electronic structure methods. Wasserman, A., & Pavanello, M. International Journal of Quantum Chemistry, 120(21) 2020. [link]

54. Towards a density functional theory of molecular fragments. What is the shape of atoms in molecules? Chávez, V. H., & Wasserman, A. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 44, no. 170 (2020): 269-279. [link]

53. Virial relations in density embedding. Jiang, K., Mosquera, M.A., Oueis, Y., Wasserman, A. Int. J. Quantum Chem (2020): e26204. [link]

52. Density embedding with constrained chemical potential.  Niffenegger, K., Y. Oueis, J. Nafziger, and A. Wasserman.  Molecular Physics (2019): 1-7.  [link]

51. Partition potential for hydrogen-bonding in formic acid dimers, S. Gomez, Y. Oueis, A. Restrepo, and A. Wasserman, Int J Quantum Chem (2019): e25814. [link]

50. Constructing a Non-additive Non-interacting Kinetic Energy Functional Approximation for Covalent Bonds from Exact Conditions, K. Jiang, J. Nafziger, and A. Wasserman, J. Chem. Phys. 149, 164112 (2018). [link]

49. Exact partition potential for model systems of interacting electrons in 1-D, Y. Oueis and A. Wasserman, Eur. Phys. J. B (2018) 91: 247. [link]

48. Non-additive Non-interacting Kinetic Energy of Rare Gas Dimers K. Jiang, J. Nafziger, and A. Wasserman, J. Chem. Phys. 148, 104113 (2018).  [link]

47. Numerical Methods for the Inverse Problem of Density Functional Theory D.S. Jensen and A. Wasserman, Int. J. Quantum Chem. 118, e:25425 (2018). [link]

46. The Importance of Being Inconsistent A. Wasserman, J. Nafziger, K. Jiang, M.C. Kim, E. Sim, and K. Burke, Annu. Rev. Phys. Chem. 68, 555 (2017). [link]

45. Accurate Reference Data for the Non-Additive Non-Interacting Kinetic Energy in Covalent Bonds J. Nafziger, K. Jiang, and A. Wasserman, J. Chem. Theory Comput. 13, 577 (2017). [link]

44. Partition-DFT On The Water Dimer S. Gomez, J. Nafziger, A. Restrepo, and A. Wasserman, J. Chem. Phys. 146, 074106 (2017).

43. Numerical Density-to-Potential Inversions In Time-Dependent Density Functional Theory D.S. Jensen and A. Wasserman, P. Chem. Chem. Phys. 18, 21079 (2016). [link]

42. Ground-state Charge Transfer: Lithium-Benzene and the Role of Hartree-Fock Exchange C.H. Borca, L.V. Slipchenko, and A. Wasserman, J. Phys. Chem. A 120, 8190 (2016). [link]

41. Time-dependent Electronic Populations in Fragment-based Time-dependent Density Functional Theory M.A. Mosquera and A. Wasserman, J. Chem. Theory Comput. 11, 3530 (2015) [link]

40. Fragment-based treatment of delocalization and static-correlation errors in Density Functional Theory J. Nafziger and A. Wasserman, J. Chem. Phys. 143, 234105 (2015). [link]

39. Time-dependent Electronic Populations in Fragment-based Time-dependent Density Functional Theory M.A. Mosquera and A. Wasserman, J. Chem. Theory Comput. 11, 3530 (2015) [link]

38. Non-analytic Spin Density Functionals M.A. Mosquera and A. Wasserman, Top. Curr. Chem.  365, 145 (2015) [link]

37. Derivative discontinuities in density functional theory M.A. Mosquera and A. Wasserman, Mol. Phys. 112, 2997 (2014); New Views Article  [link]

36. Density-based Partitioning Methods for Ground-State Molecular Calculations J. Nafziger and A. Wasserman, J. Phys. Chem. A 118, 7623 (2014); Feature Article  [link]

35. Integer Discontinuity of Density Functional Theory M.A. Mosquera and A. Wasserman, Phys. Rev. A 89, 052506 (2014) [link]

34. Current Density Partitioning in Time-dependent Current Density Functional Theory M.A. Mosquera and A. Wasserman, J. Chem. Phys. 140, 18A525 (2014) [link]

33. Comment: Application of Partition Density Functional Theory to One-dimensional Models P. Elliott, D. Jensen, A. Wasserman, and K. Burke, Phys. Rev. A 89, 026501 (2014) [link]

32. Stark Ionization of Atoms and Molecules within Density Functional Resonance Theory A.H. Larsen, U. De Giovannini, D.L. Whitenack, A. Wasserman, and A. Rubio, J. Phys. Chem. Lett. 4, 2734 (2013) [link]

31. Fragment-based Time-dependent Density-functional Theory M.A. Mosquera, D. Jensen, and A. Wasserman, Phys. Rev. Lett. 111, 023001 (2013) [link]

30. Pi Donation and its Effects on the Excited-state Lifetimes of Luminescent Platinum(II) Terpyridine Complexes in Solution L. Hight, M. McGuire, Y. Zhang, M. Bork, P. Fanwick, A. Wasserman, and D. McMillin, Inorg. Chem. 52, 8476 (2013) [link]

29. Partition Density Functional Theory and its Extension to the Spin-polarized Case M.A. Mosquera and A. Wasserman, Molecular Phys. 111, 505 (2013) [link]

28. Exchange-Correlation Asymptotics and High Harmonic Spectra M.R. Mack, D.L. Whitenack, and A. Wasserman, Chem. Phys. Lett. 558, 15 (2013)

27. Density-Functional Resonance Theory: complex density functions, convergence, orbital energies and functionals, D. L. Whitenack and A. Wasserman,  J. Chem. Phys. 136, 164106 (2012) [link]

26. Fragment Occupations in Partition Density Functional Theory R. Tang, J. Nafziger, and A. Wasserman, Phys. Chem. Chem. Phys. 14, 7780 (2012) [link]

25. Density-Functional Derivative Discontinuity at the Maximum Number of Bound Electrons D. L. Whitenack, Y. Zhang, and A. Wasserman,  Phys. Rev. A 85, 042504 (2012)

24. Molecular Binding Energies from Partition Density Functional Theory J. Nafziger, Q. Wu, and A. Wasserman,  J. Chem. Phys. 135, 234101 (2011) [link]

23. Density Functional Resonance Theory of Unbound Electronic Systems D.L. Whitenack, and A. Wasserman, Phys. Rev. Lett. 107, 163002 (2011) [link]

22. Transferability of Atomic Properties in Molecular Partitioning: A Comparison Y. Zhang and A. Wasserman, J. Chem. Theory Comput. 6, 3312 (2010) [link]

21. Partition Density Functional Theory P. Elliott, K. Burke, M.H. Cohen, and A. Wasserman, Phys. Rev. A 82, 024501 (2010) [link]

20. Resonance Lifetimes from Complex Densities D.L. Whitenack and A. Wasserman, J. Phys. Chem. Lett. 1, 407-411 (2010) [link]

19. Semiclassical Ground-State Energies of Many-Electron Systems B.R. Landry, A. Wasserman, and E.J. Heller, Phys. Rev. Lett. 103, 066401 (2009) [link]

18. Density Functional Partition Theory with Fractional Occupations P. Elliott, M.H. Cohen, A. Wasserman, and K. Burke, J. Chem. Theory Comput. 5, 827 (2009) [link]

17. Charge Transfer in Partition Theory M.H. Cohen, A. Wasserman, R. Car, and K. Burke, J. Phys. Chem. A 113, 2183 (2009) [link]

16. Investigating interaction-induced chaos using time-dependent density-functional theory, A. Wasserman N.T. Maitra, and E.J. Heller, Physical Review a - Atomic, Molecular, and Optical Physics. 77 (2008) [link]

15. Partition theory: a very simple illustration, M.H. Cohen. A. Wasserman, and K. Burke, The Journal of Physical Chemistry. A. 111: 12447-53 (2007) [link]

14. Time-dependent density functional calculation of e-H scattering, M. van Faassen, A. Wasserman, E. Engel, F. Zhang, and K. Burke, Physical Review Letters. 99: 043005 (2007) [link]

13. On the foundations of chemical reactivity theory, M.H. Cohen and A. Wasserman, The Journal of Physical Chemistry. A. 111: 2229-42 (2007) [link]

12. Hohenberg-Kohn theorem for the lowest-energy resonance of unbound systems, A. Wasserman and N. Moiseyev, Physical Review Letters. 98: 093003 (2007) [link]

11. On hardness and electronegativity equalization in chemical reactivity theory, M.H. Cohen and A. Wasserman, Journal of Statistical Physics. 125: 1121-1139 (2006) [link]

10. Scattering amplitudes, A. Wasserman and K. Burke, Lecture Notes in Physics. 706: 493-505 (2006) [link]

9. Rydberg transition frequencies from the local density approximation, A. Wasserman and K. Burke, Physical Review Letters. 95: 163006 (2005) [link]

8. Continuum states from time-dependent density functional theory, A. Wasserman, N.T. Maitra, and K, Burke, The Journal of Chemical Physics. 122: 144103 (2005) [link]

7. N-representability and stationarity in time-dependent density-functional theory, M.H. Cohen and A. Wasserman, Physical Review A. 71 (2005) [link]

6. Book Chapter: Recent Advances in Density Functional Theory, M.H. Cohen and A. Wasserman, in “Proceedings of the International School of Physics “Enrico Fermi”. The Physics of Complex Systems (New Advances and Perspectives)”, eds. F. Mallamace and H.E. Stanley, pp.253-295 (IOS Press, Amsterdam, 2004).

5. Revisiting N‐continuous density‐functional theory: Chemical reactivity and “Atoms” in “Molecules”, M.H. Cohen and A. Wasserman, Israel journal of chemistry (2003) [link]

4. Accurate Rydberg excitations from the local density approximation, A. Wasserman, N.T. Maitra, and K. Burke, Phys. Rev. Lett. 91: 263001 (2003) [link]

3. Book Chapter: What is time-dependent density functional theory? Successes and Challenges, N.T. Maitra, A. Wasserman, and K. Burke, in “Electron Correlations and Materials Properties 2”, eds. A. Gonis, N. Kioussis, and M. Ciftan, pp. 285-298 (Kluwer Academic/Plenum, 2003).

2. Origen de la relación de autoconsistencia del parámetro de orden en superconductividad, A. Wasserman and V. Niño, Revista Colombiana de Física 32 (1), 109-113 (2000).

1. Efecto de la periodicidad del potencial de pares sobre el espectro de energía de las cuasipartículas en un superconductor, A. Wasserman and V. Niño, Revista Colombiana de Física 31 (2), 287-292 (1999).