Для математических высказываний всегда можно сделать выбор между двумя различными альтернативами "истина" и "ложь", а для высказываний, сделанных на "словесном" языке, понятия "истинности" и "ложности" несколько более расплывчаты. Однако, например, такие словесные формы, как "Иди домой" и "Идёт ли дождь?", не являются высказываниями. Поэтому понятно, что высказываниями являются такие словесные формы, в которых что-либо утверждается. Не являются высказываниями вопросительные или восклицательные предложения, обращения, а также пожелания или требования. Их невозможно оценить значениями "истина" и "ложь".
Высказывания же, напротив, можно рассмотривать как величину, которая может принимать два значения: "истина" и "ложь".
Например, даны суждения: "собака - животное", "Париж - столица Италии", "3 < 5", "в каждом треугольнике биссекрисса делит противоположную сторону на две равные части".
Первое из этих высказываний может быть оценено символом "истина", второе - "ложь", третье - "истина" и четвёртое - "ложь". Такая трактовка высказываний составляет предмет алгебры высказываний. Будем обозначать высказывания большими латинскими буквами A, B, ..., а их значения, то есть истину и ложь, соответственно И и Л. В обычной речи употребляются связи между высказываниями "и", "или" и другие.
Эти связи позволяют, соединяя между собой различные высказывания, образовывать новые высказывания - сложные высказывания. Например, связка "и". Пусть даны высказывания: "π больше 3" и высказывание "π меньше 4". Можно организовывать новое - сложное высказывание "π больше 3 и π меньше 4". Высказывание "если π иррационально, то π² тоже иррационально" получается связыванием двух высказываний связкой "если - то". Наконец, мы можем получить из какого-либо высказывания новое - сложное высказывание - отрицая первоначальное высказывание.
Рассматривая высказывания как величины, принимающие значения И и Л, мы определим далее логические операции над высказываниями, которые позволяют из данных высказываний получать новые - сложные высказывания.
Пусть даны два произвольных высказывания A и B.
1. Первая логическая операция над этими высказываниями - конъюнкция - представляет собой образование нового высказывания, которое будем обозначать A ∧ B и которое истинно тогда и только тогда, когда A и B истинны. В обычной речи этой операции соответствует соединение высказываний связкой "и".
Таблица истинности для конъюнкции(рис.1):
рис.1
2. Вторая логическая операция над высказываниями A и B - дизъюнкция, выражаемая в виде A ∨ B, определяется следующим образом: оно истинно тогда и только тогда, когда хотя бы одно из первоначальных высказываний истинно. В обычной речи эта операция соответствует соединению высказываний связкой "или". Однако здесь мы имеем не разделительное "или", которое понимается в смысле "либо-либо", когда A и B не могут быть оба истинны. В определении логики высказываний A ∨ B истинно и при истинности лишь одного из высказываний, и при истинности обоих высказываний A и B.
Таблица истинности для дизъюнкции(рис.2):
Рис.2
3. Третья логическая операция над высказываниями A и B, выражаемая в виде A → B; полученное таким образом высказывание ложно тогда и только тогда, когда A истинно, а B ложно. A называется посылкой, B - следствием, а высказывание A → B - следованием, называемая также импликацией. В обычной речи эта операция соответствует связке "если - то": "если A, то B". Но в определении логики высказываний это высказывание всегда истинно независимо от того, истинно или ложно высказывание B. Это обстоятельство можно кратко сформулировать так: "из ложного следует всё, что угодно". В свою очередь, если A истинно, а B ложно, то всё высказывание A → B ложно. Оно будет истинным тогда и только тогда, когда и A, и Bистинны. Кратко это можно сформулировать так: "из истинного не может следовать ложное".
Таблица истинности для следования (импликации)(рис.3):
рис.3