Books Edited:
V. Kumar, D. Rottensteiner, M. Ruzhansky (Eds.) Pseudo-Differential Operators and Related Topics. Extended Abstracts PSORT 2024, Research Perspectives Ghent Analysis and PDE Center, Trends in Mathematics, Birkhäuser, 2025. x+174pp. link
👉 The preprint version of a paper may differ from the published version.
Geometric Analysis and PDEs:
Preprints:
S. Bhowmick, S. Ghosh and Vishvesh Kumar, Infinitely many solutions for nonlinear superposition operators of mixed fractional order involving critical exponent. https://doi.org/10.48550/arXiv.2506.11832
Y. Aikyn, S. Ghosh, Vishvesh Kumar and M. Ruzhansky, Brezis-Nirenberg type problems associated with nonlinear superposition operators of mixed fractional order. https://doi.org/10.48550/arXiv.2504.05105
Vishvesh Kumar and B. T. Torebek, Fujita-type results for the semilinear heat equations driven by mixed local-nonlocal operators. https://doi.org/10.48550/arXiv.2502.21273
S. Ghosh and Vishvesh Kumar, Critical equations involving nonlocal subelliptic operators on stratified Lie groups: Spectrum, bifurcation and multiplicity. https://doi.org/10.48550/arXiv.2501.12791
S. Ghosh, T. Gou, Vishvesh Kumar and V. D. Rădulescu, Fractional Morrey-Sobolev type embeddings and nonlocal subelliptic problems with oscillating nonlinearities on stratified Lie groups. Submitted.
S. Ghosh and Vishvesh Kumar, Nonlocal subelliptic systems involving concave-convex nonlinearities on stratified Lie groups. Submitted.
S. Ghosh, Vishvesh Kumar and M. Ruzhansky, Subelliptic nonlocal Brezis-Nirenberg problems on stratified Lie groups. https://doi.org/10.48550/arXiv.2409.03867
A. Dasgupta, Vishvesh Kumar, S. S. Mondal and M. Ruzhansky, Higher order hypoelliptic damped wave equations on graded Lie groups with data from negative order Sobolev spaces. https://doi.org/10.48550/arXiv.2404.08766
S. Ghosh, Vishvesh Kumar and M. Ruzhansky, Best constants in subelliptic fractional Sobolev and Gagliardo-Nirenberg inequalities and ground states on stratified Lie groups. https://doi.org/10.48550/arXiv.2306.07657
Papers:
Vishvesh Kumar, S. S. Mondal, M. Ruzhansky and B. Torebek, Higher order hypoelliptic damped wave equations on graded Lie groups with data from negative order Sobolev spaces: the critical case. J. Evol. Equ. 25(58), (2025). https://doi.org/10.1007/s00028-025-01082-w Preprint version: https://doi.org/10.48550/arXiv.2408.05598
R. Zhang, Vishvesh Kumar and M. Ruzhansky, Liouville-type theorem for higher order Hardy-Hènon type systems on the sphere, J. Math. Anal. Appl. 543(2) (2025) 129029. https://doi.org/10.1016/j.jmaa.2024.129029
Vishvesh Kumar, M. Ruzhansky and R. Zhang, Liouville type theorems for subelliptic systems on the Heisenberg group with general nonlinearity, Ann. Fenn. Math. 49(2), (2024). https://doi.org/10.54330/afm.148660 Preprint Version: https://doi.org/10.48550/arXiv.2303.04210
A. Dasgupta, Vishvesh Kumar, S. S. Mondal and M. Ruzhansky, Semilinear damped wave equations on the Heisenberg group with initial data from Sobolev spaces of negative order, J. Evol. Equ. 24(51), (2024). https://doi.org/10.1007/s00028-024-00976-5 (Open Access).
A. K. Bhardwaj, Vishvesh Kumar and S. S. Mondal, Estimates for the nonlinear viscoelastic damped wave equation on compact Lie groups. Proc. Roy. Soc. Edinburgh Sect. A. 154(3) , (2024) 810 - 829. https://doi.org/10.1017/prm.2023.38 Preprint Version: https://doi.org/10.48550/arXiv.2207.06645
R. Zhang, Vishvesh Kumar and M. Ruzhansky, A Direct Method of Moving Planes for Logarithmic Schrödinger Operator, Z. Anal. Anwend. 43(3/4) (2024) 287-297. https://doi.org/10.4171/zaa/1757 (Open Access)
S. Ghosh, Vishvesh Kumar and M. Ruzhansky, Compact Embeddings, Eigenvalue Problems, and subelliptic Brezis-Nirenberg equations involving singularity on stratified Lie groups, Math. Ann. 388, (2024) 4201–4249. https://doi.org/10.1007/s00208-023-02609-7 (Open Access).
R. Zhang, Vishvesh Kumar and M. Ruzhansky, Symmetry of positive solutions for Lane-Emden systems involving the Logarithmic Laplacian, Acta Appl. Math.188, 16 (2023). https://doi.org/10.1007/s10440-023-00627-w. Preprint Version: https://doi.org/10.48550/arXiv.2210.09110
A. Dasgupta, Vishvesh Kumar and S. S. Mondal, Nonlinear fractional dumped wave equations on compact Lie groups, Asymptot. Anal. 134 (3-4), (2023) 485-511. https://doi.org/10.3233/ASY-231842 Preprint Version: https://doi.org/10.48550/arXiv.2211.06155
(Abstract) Harmonic analysis:
Preprints:
Vishvesh Kumar, T. Rana and M. Ruzhansky, Classical inequalities for all Fourier matrix coefficients of SL(2, R) and their applications. https://doi.org/10.48550/arXiv.2409.17918
Vishvesh Kumar, M. Ruzhansky and H.-W. Zhang, Stein-Weiss inequality on non-compact symmetric spaces. https://doi.org/10.48550/arXiv.2310.19412
Vishvesh Kumar, M. Ruzhansky and H.-W. Zhang, Smoothing properties of dispersive equations on non-compact symmetric spaces. https://doi.org/10.48550/arXiv.2302.03961
Papers:
Vishvesh Kumar, $Lp$-L^q$ hypergeometric spectral and Fourier multipliers associated with root systems, Potential Anal. (2025). https://doi.org/10.1007/s11118-025-10213-4
M. Kumar, Vishvesh Kumar and M. Ruzhansky, Titchmarsh theorems on Damek-Ricci spaces via moduli of continuity of higher order, Internat. J. Math. (2025). https://doi.org/10.1142/S0129167X25500016 Preprint version: https://doi.org/10.48550/arXiv.2205.06028
A. Kassymov, Vishvesh Kumar and M. Ruzhansky, Functional inequalities on symmetric spaces of noncompact type and applications, J. Geom. Anal. 34( 208), (2024). https://doi.org/10.1007/s12220-024-01644-3 (Open access) Preprint version: https://doi.org/10.48550/arXiv.2212.02641
Vishvesh Kumar, J. E. Restrepo and M. Ruzhansky, Asymptotic estimates for the growth of Deformed Hankel transform by modulus of continuity, Results Math. 79(22), (2024). https://doi.org/10.1007/s00025-023-02051-w
Vishvesh Kumar and M. Ruzhansky, $L^p$-$L^q$ multipliers on commutative hypergroups, J. Aust. Math. Soc. 115(3), (2023), 375-395. https://doi.org/10.1017/S1446788723000125
Vishvesh Kumar and M. Ruzhansky, $L^p$-$L^q$ boundedness of (k, a)-Fourier multipliers with applications to nonlinear equations, Int. Math. Res. Not. IMRN, no. 2, (2023) 1073-1093. 10.1093/imrn/rnab256 (Open Access).
Vishvesh Kumar and M. Ruzhansky, Hardy-Littlewood inequality and $L^p$-$L^q$ Fourier multipliers on compact hypergroups, J. Lie theory 32(2) (2022), 475-498. https://www.heldermann.de/JLT/JLT32/JLT322/jlt32023.htm Preprint version: https://arxiv.org/abs/2005.08464
A.R. Bagheri Salec, Vishvesh Kumar and S. M. Tabatabaie, Convolution Properties of Orlicz Spaces on hypergroups, Proc. Amer. Math. Soc. 150 (2022), 1685-1696. DOI: https://doi.org/10.1090/proc/15799 https://arxiv.org/abs/2101.07366
Vishvesh Kumar and S. M. Tabatabaie, Hypercyclic Sequences of weighted translations on hypergroups, Semigroup Forum, 103, (2021), 916–934. DOI:https://doi.org/10.1007/s00233-021-10226-6 Preprint version: https://arxiv.org/abs/2003.10036
Vishvesh Kumar and M. Ruzhansky, A note on K-functional, Modulus of smoothness, Jackson theorem and Bernstein-Nikolskii-Stechkin inequality on Damek-Ricci spaces, J. Approx. Theory, 264, (2021), 105537. DOI: https://doi.org/10.1016/j.jat.2020.105537 (Preprint version: https://arxiv.org/abs/2005.01413)
I. Akbarbaglu, M. R. Azimi, Vishvesh Kumar, Topological transitive sequence of cosine operators on Orlicz space, Ann. Funct. Anal., 12(2), (2021). https://doi.org/10.1007/s43034-020-00088-4 https://arxiv.org/abs/1809.06085
Vishvesh Kumar and R. Sarma, Continuity of operators intertwining with translation operators on hypergroups. Aequat. Math. 95, (2021), 343-349. https://doi.org/10.1007/s00010-020-00745-y
Vishvesh Kumar, N. Shravan Kumar and R. Sarma, Characterization of Multipliers on Hypergroups. Acta Math Vietnam 45, 783–794 (2020). https://doi.org/10.1007/s40306-020-00379-x
Vishvesh Kumar and M. Ruzhansky, Hausdorff-Young inequality for Orlicz spaces on compact homogeneous manifolds, Indag. Math. (N.S.) 31(2) (2020), 266-276 https://doi.org/10.1016/j.indag.2020.01.004
Vishvesh Kumar, Kenneth A. Ross and Ajit Iqbal Singh, Ramsey theory for hypergroups, Semigroup Forum, 100, 482–504 (2020). https://doi.org/10.1007/s00233-019-10009-0
Vishvesh Kumar, Orlicz Spaces and Amenability of Hypergroups, Bull. Iran. Math. Soc. (2019). https://doi.org/10.1007/s41980-019-00310-7
Vishvesh Kumar and R. Sarma, The Hausdorff–Young inequality for Orlicz spaces on compact hypergroups, Colloq. Math. 160(1) (2020), 41-51. https://doi.org/10.4064/cm7627-4-2019
Vishvesh Kumar and N. Shravan Kumar, Vector valued Fourier analysis on hypergroups, Oper. Matrices, 13(4) (2019), 1147-1161. http://oam.ele-math.com/13-76/Vector-valued-Fourier-analysis-on-hypergroups
Vishvesh Kumar, N. Shravan Kumar and R. Sarma, Unbounded translation invariant operators on commutative hypergroups, Methods Funct. Anal. Topology 25(3) (2019), 236-247. http://mfat.imath.kiev.ua/article/?id=1209
Vishvesh Kumar, Kenneth A. Ross and Ajit Iqbal Singh, Hypergroup deformations of semigroups, Semigroup Forum 99(1) (2019), 169-195. https://doi.org/10.1007/s00233-019-10003-6 (An Addendum: https://doi.org/10.1007/s00233-019-10023-2 ).
Vishvesh Kumar, N. Shravan Kumar and R. Sarma, Orlicz spaces on hypergroups, Publ. Math. Debrecen 94(1-2) (2019), 31-47. http://publi.math.unideb.hu/load_pdf.php?p=2279
Vishvesh Kumar, N. Shravan Kumar and R. Sarma, Orlicz algebras on homogeneous spaces of compact groups and their abstract linear representations, Mediterr. J. Math. 15(4) (2018), Paper No. 186, 13 pp. https://doi.org/10.1007/s00009-018-1225-6
R. Sarma, N. Shravan Kumar and Vishvesh Kumar, Multipliers on vector-valued L1-spaces for hypergroups, Acta Math. Sin. (Engl. Ser.) 34(7) (2018), 1059-1073. https://doi.org/10.1007/s10114-018-7303-7
Pseudo-differential operators:
Preprints:
Vishvesh Kumar and S. S. Mondal, Szegö limit theorems for anharmonic oscillators. Submitted.
D. Cardona, Vishvesh Kumar and M. Ruzhansky, Pseudo-differential operators on Homogeneous vector bundles over compact homogeneous manifolds. https://doi.org/10.48550/arXiv.2403.08990
D. Cardona, M. Chatzakou, J. Delgado, Vishvesh Kumar and M. Ruzhansky, Anharmonic semigroups and applications to global well-posedness of nonlinear heat equations. https://arxiv.org/abs/2401.13750
A. Dasgupta, Vishvesh Kumar, L. Mohan and S. S. Mondal, Non-harmonic M-elliptic pseudo differential operators on manifolds. https://doi.org/10.48550/arXiv.2307.10825
Papers:
D. Cardona, Vishvesh Kumar, M. Ruzhansky and N. Tokmagambetov, L^p-L^q boundedness of pseudo-differential operators on smooth manifolds and its applications to nonlinear equations, to appear in Ann. Funct. Anal. (2025). Preprint version: https://arxiv.org/abs/2005.04936
D. Cardona, Vishvesh Kumar and M. Ruzhansky, L^p-L^q boundedness of pseudo-differential operators on graded Lie groups, New York J. Math., 31 (2025), 722-748. https://www.emis.de/journals/NYJM/j/2025/Vol31.html Preprint version: https://doi.org/10.48550/arXiv.2307.16094
D. Cardona, Vishvesh Kumar, M. Ruzhansky and N. Tokmagambetov, Expansion of traces and Dixmier traceability for global pseudo-differential operators on manifolds with boundary, Adv, Oper. Theory, 10(53), (2025). https://doi.org/10.1007/s43036-025-00438-w
D. Cardona, J. Delgado, Vishvesh Kumar and M. Ruzhansky, L^p-L^q estimates for subelliptic pseudo-differential operators on compact Lie groups, to appear in Osaka J. Math. (2025) Preprint version: https://doi.org/10.48550/arXiv.2310.16247
M. Chatzakou and Vishvesh Kumar, L^p-L^q boundedness of Fourier multipliers associated with the anharmonic Oscillator, J. Fourier Anal. Appl, 29(73), (2023). https://doi.org/10.1007/s00041-023-10047-x Preprint version: https://arxiv.org/abs/2004.07801
Vishvesh Kumar and S. S. Mondal, Symbolic calculus and $M$-ellipticity of pseudo-differential operators on Z^n, Anal. Appl. (Singap.), 21(06), (2023), 1447-1475. https://doi.org/10.1142/S0219530523500215 Preprint version: https://arxiv.org/abs/2111.10224
D. Cardona, Vishvesh Kumar, M. Ruzhansky and N. Tokmagambetov, Global functional calculus, lower/upper bounds and evolution equations on manifolds with boundary, Adv, Oper. Theory, 8(50), (2023). https://doi.org/10.1007/s43036-023-00254-0 (Open access). https://arxiv.org/abs/2101.02519
Vishvesh Kumar and S. S. Mondal, $L^2-L^p$ estimates and Hilbert--Schmidt pseudo differential operators on Heisenberg motion groups, Appl. Anal. (2022). https://doi.org/10.1080/00036811.2022.2078717
Vishvesh Kumar and S. S. Mondal, Schatten class and nuclear pseudo-differential operators on homogeneous spaces of compact groups, Monatsh. Math. 197 (2022), no. 1, 149–176. DOI https://doi.org/10.1007/s00605-021-01663-0 https://arxiv.org/abs/1911.10554
M. Chatzakou and Vishvesh Kumar, L^p-L^q boundedness of spectral multipliers of the anharmonic oscillator, C. R. Math. Acad. Sci. Paris, 360 (2022), 343-347. https://doi.org/10.5802/crmath.290 https://arxiv.org/abs/2110.15294
A. Dasgupta and Vishvesh Kumar, Ellipticity and Fredholmness of pseudo-differential operators on l^2(Z^n), Proc. Amer. Math. Soc. 150 (7), (2022), 2849–2860. 10.1090/proc/15661
Vishvesh Kumar and S. S. Mondal, Trace class and Hilbert-Schmidt pseudo differential operators on step two nilpotent Lie groups, Bulletin des Sciences Mathématiques,171, (2021), 103015. https://doi.org/10.1016/j.bulsci.2021.103015
Vishvesh Kumar and S. S. Mondal, Self-adjointness and compactness of operators related to finite measure spaces, Complex Anal. Oper. Theory, 15( 22) (2021). https://doi.org/10.1007/s11785-020-01067-2
D. Cardona and Vishvesh Kumar, The nuclear trace of periodic vector-valued pseudo-differential operators with applications to index theory, Math. Nach, 294(9), (2021), 1657-1683. https://doi.org/10.1002/mana.201900040 Preprint: https://arxiv.org/abs/1901.10010
Vishvesh Kumar and S. S. Mondal, Nuclearity of operators related to finite measure spaces, J. Pseudo-Differ. Oper. Appl. 11, (2020), 1031–1058. https://doi.org/10.1007/s11868-020-00353-z
D. Cardona, C. del Corral and Vishvesh Kumar, Dixmier traces for discrete pseudo-differential operators, J. Pseudo-Differ. Oper. Appl. 11, 647-656 (2020). https://doi.org/10.1007/s11868-020-00335-1
A. Dasgupta and Vishvesh Kumar, Hilbert-Schmidt and Trace class pseudo-differential operators on the abstract Heisenberg group, J. Math. Anal. Appl. 486(2) (2020), 123936. https://doi.org/10.1016/j.jmaa.2020.123936
D. Cardona and Vishvesh Kumar, L^p-boundedness and L^p-nuclearity of multilinear pseudo-differential operators on Z^n and the torusT^n, J. Fourier Anal. Appl. 25(6) (2019), 2973-3017. https://doi.org/10.1007/s00041-019-09689-7
Vishvesh Kumar and M. W. Wong, C^∗-algebras, H^∗-algebras and trace ideals of pseudo-differential operators on locally compact, Hausdorff and abelian groups, J. Pseudo-Differ. Oper. Appl. 10(2) (2019), 269-283. https://doi.org/10.1007/s11868-019-00280-8 (Correction: https://doi.org/10.1007/s11868-020-00338-y ).
Vishvesh Kumar, Pseudo-differential operators on homogeneous spaces of compact and Hausdorff groups, Forum Math. 31(2) (2019), 275-282. https://doi.org/10.1515/forum-2018-0155
D. Cardona and Vishvesh Kumar, Multilinear analysis for discrete and periodic pseudo-differential operators in Lp-spaces, Rev. Integr. Temas Mat. 36(2) (2018), 151-164. https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/9120/8966