You can also find my articles on my Google Scholar profile
You can also find my articles on my Google Scholar profile
Jain, Vikram., Verhelst, Marian., Towards Heterogeneous Multi-core Systems-on-Chip for Edge Machine Learning: Journey from Single-core Acceleration to Multi-core Heterogeneous Systems. United States: Springer Nature Switzerland, 2023.
Vikram Jain, M Verhelst, P Karsmakers, “Towards Heterogeneous Multi-core Systems-on-Chip for Edge Machine Learning”, Ph.D. Thesis, KU Leuven, 2023
Vikram Jain, “Reconfigurable-Rate Product Decoders for Rate-Adaptable Optical Networks”, Master Thesis, Chalmers University of Technology, 2018
Vikram Jain, S. Giraldo, J. D. Roose, L. Mei, B. Boons and M. Verhelst, “TinyVers: A Tiny Versatile System-on-Chip With State-Retentive eMRAM for ML Inference at the Extreme Edge,” in IEEE Journal of Solid-State Circuits, vol. 58, no. 8, pp. 2360-2371, Aug. 2023, doi: 10.1109/JSSC.2023.3236566.
P. Houshmand, G.M. Sarda, Vikram Jain, et al., “DIANA: An End-to-End Hybrid DIgital and ANAlog Neural Network SoC for the Edge,” in IEEE Journal of Solid-State Circuits, vol. 58, no. 1, pp. 203-215, Jan. 2023, doi: 10.1109/JSSC.2022.3214064.
Jain, Vikram., Jadhav, N. & Verhelst, M., “Enabling real-time object detection on low cost FPGAs”. J Real-Time Image Proc 19, 217–229 (2022).
J. S. P. Giraldo, Vikram Jain and M. Verhelst, “Efficient Execution of Temporal Convolutional Networks for Embedded Keyword Spotting,” in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 29, no. 12, pp. 2220-2228, Dec. 2021, doi: 10.1109/TVLSI.2021.3120189.
L. Mei, P. Houshmand, Vikram Jain, S. Giraldo and M. Verhelst, “ZigZag: Enlarging Joint Architecture-Mapping Design Space Exploration for DNN Accelerators,” in IEEE Transactions on Computers, vol. 70, no. 8, pp. 1160-1174, 1 Aug. 2021, doi: 10.1109/TC.2021.3059962.
Vikram Jain, C. Fougstedt and P. Larsson-Edefors, “Variable-Rate VLSI Architecture for 400-Gb/s Hard-Decision Product Decoder,” in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 1, pp. 25-34, Jan. 2021, doi: 10.1109/TCSI.2020.3035419.
Mei, Linyan, Pouya Houshmand, Vikram Jain, Sebastian Giraldo, and Marian Verhelst. “ZigZag: A memory-centric rapid DNN accelerator design space exploration framework.” arXiv preprint arXiv:2007.11360 (2020).
Vikram Jain, Daniel Grubb, Jerry Zhao, Kevin Anderson, Ken T Ho, Yufeng Chi, Ella Schwarz, Krste Asanović, Yakun Sophia Shao, Borivoje Nikolić. ”Cygnus: A 1 GHz Heterogeneous Octa-Core RISC-V Vector Processor for DSP,” 2025 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits) (Accepted).
Seah Kim, Jerry Zhao, Roger Hsiao, Yufeng Chi, Vighnesh Iyer, Vikram Jain, Borivoje Nikolić, Yakun Sophia Shao. ”MAVERIC: A 16nm 72 FPS, 10 mJ/frame Heterogeneous Robotics SoC with 4 Cores and 13 INT8/FP32 Accelerators,” 2025 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits) (Accepted).
Man Shi, Chao Fang, Weijie Jiang, Vikram Jain, Antony Joseph, Wim Dehaene, Marian Verhelst. ”A 16nm 550 - 1320 BTOPS/W NPU Exploiting Training-free Structured Bit-level Sparsity and Dynamic Dataflow Processing,” 2025 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits) (Accepted).
Vikram Jain, Wei Tang, Zuoguo Wu, Viansa Schmulbach, Sophia Shao, Zhengya Zhang, and Borivoje Nikolic. 2024. Design Approach for Die-to-Die Interfaces to Enable Energy-Efficient Chiplet Systems. In Proceedings of the 29th ACM/IEEE International Symposium on Low Power Electronics and Design (ISLPED '24). Association for Computing Machinery, New York, NY, USA, 1–6. https://doi.org/10.1145/3665314.3680473
M. Shi, V. Jain, A. Joseph, M. Meijer and M. Verhelst, "BitWave: Exploiting Column-Based Bit-Level Sparsity for Deep Learning Acceleration," 2024 IEEE International Symposium on High-Performance Computer Architecture (HPCA), Edinburgh, United Kingdom, 2024, pp. 732-746, doi: 10.1109/HPCA57654.2024.00062.
J. Dumoulin, P. Houshmand, V. Jain and M. Verhelst, "Enabling Efficient Hardware Acceleration of Hybrid Vision Transformer (ViT) Networks at the Edge," 2024 IEEE International Symposium on Circuits and Systems (ISCAS), Singapore, Singapore, 2024, pp. 1-5, doi: 10.1109/ISCAS58744.2024.10558587.
V. Jain et al., "PATRONoC: Parallel AXI Transport Reducing Overhead for Networks-on-Chip targeting Multi-Accelerator DNN Platforms at the Edge," 2023 60th ACM/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 2023, pp. 1-6, doi: 10.1109/DAC56929.2023.10247800.
Vikram Jain, S. Giraldo, J. D. Roose, B. Boons, L. Mei and M. Verhelst, “TinyVers: A 0.8-17 TOPS/W, 1.7 μW-20 mW, Tiny Versatile System-on-chip with State-Retentive eMRAM for Machine Learning Inference at the Extreme Edge,” 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), Honolulu, HI, USA, 2022, pp. 20-21, doi: 10.1109/VLSITechnologyandCir46769.2022.9830409.
K. Ueyoshi, Ioannis A. Papistas, Pouya Houshmand, Giuseppe M. Sarda, Vikram Jain et al., “DIANA: An End-to-End Energy-Efficient Digital and ANAlog Hybrid Neural Network SoC,” 2022 IEEE International Solid- State Circuits Conference (ISSCC), San Francisco, CA, USA, 2022, pp. 1-3, doi: 10.1109/ISSCC42614.2022.9731716.
Vikram Jain, L. Mei and M. Verhelst, “Analyzing the Energy-Latency-Area-Accuracy Trade-off Across Contemporary Neural Networks,” 2021 IEEE 3rd International Conference on Artificial Intelligence Circuits and Systems (AICAS), Washington DC, DC, USA, 2021, pp. 1-4, doi: 10.1109/AICAS51828.2021.9458553.
Vikram Jain, C. Fougstedt and P. Larsson-Edefors, “Variable-Rate FEC Decoder VLSI Architecture for 400G Rate-Adaptive Optical Communication,” 2019 26th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Genoa, Italy, 2019, pp. 45-48, doi: 10.1109/ICECS46596.2019.8964930.
M. D. Gomony et al., “PetaOps/W edge-AI μ\mu Processors: Myth or reality?,” 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE), Antwerp, Belgium, 2023, pp. 1-6, doi: 10.23919/DATE56975.2023.10136926.
Gomony, Manil, F. Putter, Anteneh Gebregiorgis, Gianna Paulin, Linyan Mei, Vikram Jain, Said Hamdioui et al. “CONVOLVE: Smart and seamless design of smart edge processors.” arXiv preprint arXiv:2212.00873 (2022).
Chip tapeout classes: Methodologies, technologies, and outcomes, ”Three Chips in a Semester”, Vikram Jain, Borivoje Nikolic. 2025 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits) (Accepted).
Full-System, Full-Stack ML SoC Architecture Research with FireSim, Chipyard, Gemmini and AuRORA, at MICRO 2024 [Link]
Speakers/Organizers: Seah Kim, Abraham Gonzalez, Jerry Zhao, Joonho Wangbo, Vikram Jain
Vikram Jain, G Sarda, P Houshmand, M Verhelst, “Towards the next generation Heterogeneous Multi-core Multi-accelerator Architectures for Machine Learning”, Spring 2022 RISC-V Week, Location: Paris, France, 2022
V Jain, S Giraldo, M Verhelst, “VERSA: A 0.8-17.1 TOPS/W, 1.68 uW-20 mW, versatile system-on-chip with state-retentive eMRAM for machine learning inference”, 2022 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 2022