Alipanahi, B., Delong, A., Weirauch, M.T. and Frey, B.J., 2015. Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning. Nature biotechnology, 33(8), pp.831-838.
Bowman, B. N., McAdam, P. R., Vivona, S., Zhang, J. X., Luong, T., Belew, R. K., ... and Woelk, C. H. (2011). Improving reverse vaccinology with a machine learning approach. Vaccine, 29(45), 8156-8164.
Chaudhuri, R., Ansari, F. A., Raghunandanan, M. V., and Ramachandran, S. (2011). FungalRV: adhesin prediction and immunoinformatics portal for human fungal pathogens. BMC genomics, 12(1), 192.
Dalsass, M., Brozzi, A., Medini, D., and Rappuoli, R. (2019). Comparison of open-source reverse vaccinology programs for bacterial vaccine antigen discovery. Frontiers in immunology, 10, 113.
Doytchinova, I. A., and Flower, D. R. (2007). VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC bioinformatics, 8(1), 4.
Folaranmi, T., Rubin, L., Martin, S.W., Patel, M. and MacNeil, J.R., 2015. Use of serogroup B meningococcal vaccines in persons aged≥ 10 years at increased risk for serogroup B meningococcal disease: recommendations of the Advisory Committee on Immunization Practices, 2015. MMWR. Morbidity and mortality weekly report, 64(22), p.608.
Giuliani, M. M., Adu-Bobie, J., Comanducci, M., Aricò, B., Savino, S., Santini, L.,. and Cartocci, E. (2006). A universal vaccine for serogroup B meningococcus. Proceedings of the National Academy of Sciences, 103(29), 10834-10839.
Goodswen, S. J., Kennedy, P. J., and Ellis, J. T. (2013). A novel strategy for classifying the output from an in silicovaccine discovery pipeline for eukaryotic pathogens using machine learning algorithms. BMC bioinformatics, 14(1), 315.
He, Y., Xiang, Z., and Mobley, H. L. (2010). Vaxign: the first web-based vaccine design program for reverse vaccinology and applications for vaccine development. BioMed Research International, 2010.
Heinson, A. I., Gunawardana, Y., Moesker, B., Hume, C. C. D., Vataga, E., Hall, Y., ... and Woelk, C. H. (2017). Enhancing the biological relevance of machine learning classifiers for reverse vaccinology. International journal of molecular sciences, 18(2), 312.
Jagannadham, J., Jaiswal, H.K., Agrawal, S. and Rawal, K., 2016. Comprehensive map of molecules implicated in obesity. PLoS One, 11(2), p.e0146759.
Jaiswal, V., Chanumolu, S. K., Gupta, A., Chauhan, R. S., and Rout, C. (2013). Jenner-predict server: prediction of protein vaccine candidates (PVCs) in bacteria based on host-pathogen interactions. BMC bioinformatics, 14(1), 211.
Jo, T., Hou, J., Eickholt, J. and Cheng, J., 2015. Improving protein fold recognition by deep learning networks. Scientific reports, 5, p.17573.
Kingma, D. P., and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
Magnan, C. N., Zeller, M., Kayala, M. A., Vigil, A., Randall, A., Felgner, P. L., and Baldi, P. (2010). High-throughput prediction of protein antigenicity using protein microarray data. Bioinformatics, 26(23), 2936-2943.
Ong, E., Wang, H., Wong, M. U., Seetharaman, M., Valdez, N., and He, Y. (2020). Vaxign-ML: supervised machine learning reverse vaccinology model for improved prediction of bacterial protective antigens. Bioinformatics.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... and Vanderplas, J. (2011). Scikit-learn: Machine learning in Python. the Journal of machine Learning research, 12, 2825-2830.
Rappuoli, R. (2000). Reverse vaccinology. Current opinion in microbiology, 3(5), 445-450.
Rizwan, M., Naz, A., Ahmad, J., Naz, K., Obaid, A., Parveen, T., Ahsan, M. and Ali, A., 2017. VacSol: a high throughput in silico pipeline to predict potential therapeutic targets in prokaryotic pathogens using subtractive reverse vaccinology. BMC bioinformatics, 18(1), pp.1-7.
Seib, K. L., Zhao, X., and Rappuoli, R. (2012). Developing vaccines in the era of genomics: a decade of reverse vaccinology. Clinical Microbiology and Infection, 18, 109-116.
Suk, H.I., Lee, S.W., Shen, D. and Alzheimer’s Disease Neuroimaging Initiative, 2015. Latent feature representation with stacked auto-encoder for AD/MCI diagnosis. Brain Structure and Function, 220(2), pp.841-859.
Swietojanski, P., Ghoshal, A. and Renals, S., 2014. Convolutional neural networks for distant speech recognition. IEEE Signal Processing Letters, 21(9), pp.1120-1124.
Thorpe, C., Edwards, L., Snelgrove, R., Finco, O., Rae, A., Grandi, G., Guilio, R. and Hussell, T., 2007. Discovery of a vaccine antigen that protects mice from Chlamydia pneumoniae infection. Vaccine, 25(12), pp.2252-2260.
Tomazic, M. L., Rodriguez, A. E., Lombardelli, J., Poklepovich, T., Garro, C., Galarza, R., and Schnittger, L. (2018). Identification of novel vaccine candidates against cryptosporidiosis of neonatal bovines by reverse vaccinology. Veterinary parasitology, 264, 74-78.
Vivona, S., Bernante, F., and Filippini, F. (2006). NERVE: new enhanced reverse vaccinology environment. BMC biotechnology, 6(1), 35.
Wei, J., Damania, A., Gao, X., Liu, Z., Mejia, R., Mitreva, M., and Zhan, B. (2016). The hookworm Ancylostoma ceylanicum intestinal transcriptome provides a platform for selecting drug and vaccine candidates. Parasites and vectors, 9(1), 518.