Journal Papers

[1] Arghode, V. K., Kumar, A., Sundarraj, S., Dutta, P., Computational Modeling of GMAW Process for Joining Dissimilar Aluminum Alloys, Numerical Heat Transfer, Part A: Applications, v 53, p 432-455, 2008.

[2] Kim, H. S., Arghode, V. K., Gupta, A. K., Combustion Characteristics of a Lean Premixed LPG-Air Combustor, International Journal of Hydrogen Energy, v 34, p 1045-1053, 2009.

[3] Kim, H. S., Arghode, V. K., Linck, M. B., Gupta, A. K., Hydrogen Addition Effects in a Confined Swirl-Stabilized Methane-Air Flame, International Journal of Hydrogen Energy, v 34, p 1054-1062, 2009.

[4] Kim, H. S., Arghode, V. K., Gupta, A. K., Flame Characteristics of Hydrogen-Enriched Methane-Air Premixed Swirling Flames, International Journal of Hydrogen Energy, v 34, p 1063-1073, 2009.

[5] Arghode, V. K., Gupta, A. K., Effect of Flow Field for Colorless Distributed Combustion (CDC) for Gas Turbine Combustion, Applied Energy, v 87, p 1631-1640, 2010.

[6] Arghode, V. K., Gupta, A. K., Investigation of Forward Flow Distributed Combustion for Gas Turbine Application, Applied Energy, v 88, p 29-40, 2011.

[7] Arghode, V. K., Gupta, A. K., Development of High Intensity CDC Combustor for Gas Turbine Engines, Applied Energy, v 88, p 963-973, 2011.

[8] Arghode, V. K., Gupta, A. K., Investigation of Reverse Flow Distributed Combustion for Gas Turbine Application, Applied Energy, v 88, p 1096-1104, 2011.

[9] Arghode, V. K., Gupta, A. K., Hydrogen Addition Effects on Methane-Air Colorless Distributed Combustion Flames, International Journal of Hydrogen Energy, v 36, p 6292-6302, 2011.

[10] Arghode, V. K., Gupta, A. K., Jet Characteristics from a Submerged Combustion System, Applied Energy, v 89, p 246-253, 2012.

[11] Arghode, V. K., Gupta, A. K., Bryden, K., M., High Intensity Colorless Distributed Combustion for Ultra Low Emissions and Enhanced Performance, Applied Energy, v 92, p 822-830, 2012.

[12] Arghode, V. K., Khalil, A. E. E., Gupta, A. K., Fuel Dilution and Liquid Fuel Operational Effects on Ultra-High Thermal Intensity Distributed Combustor, Applied Energy, v 95, p 132-138, 2012.

[13] Khalil, A. E. E., Arghode, V. K., Gupta, A. K., Lee, S. C., Low Calorific Value Fuelled Distributed Combustion with Swirl for Gas Turbine Applications, Applied Energy, v 98, p 69-78, 2012.

[14] Khalil, A. E. E., Arghode, V. K., Gupta, A. K., Novel Mixing for Ultra-High Thermal Intensity Distributed Combustor, Applied Energy, v 105, p 327-334, 2013.

[15] Arghode, V. K., Gupta, A. K., Role of Thermal Intensity on Operational Characteristics of Ultra-Low Emission Colorless Distributed Combustion, Applied Energy, v 111, p 930-956, 2013.

[16] Arghode, V. K., Joshi, Y., Modeling Strategies for Investigation of Air Flow through Perforated Tile in a Data Center, IEEE Transactions on Components, Packaging and Manufacturing Technology, v 3, p 800-810, 2013.

[17] Arghode, V. K., Sundaralingam, V., Joshi, Y., Phelps, W., Thermal Characteristics of Open and Contained Data Center Cold Aisle, ASME Journal of Heat Transfer, v 135, p 061901-1-11, 2013.

[18] Arghode, V. K., Kumar, P., Joshi, Y., Weiss, T., Meyer, G., Rack Level Modeling of Air Flow Through Perforated Tile in a Data Center, ASME Journal of Electronic Packaging, v 135, p 030902-1-07, 2013.

[19] Arghode, V. K., Joshi, Y., Room Level Modeling of Air Flow in a Contained Data Center Aisle, ASME Journal of Electronic Packaging, v 136, p 011011-1-10, 2014.

[20] Sundaralingam, V., Arghode, V. K., Joshi, Y., Phelps, W., Experimental Characterization of Various Cold Aisle Containment Configurations for Data Centers, ASME Journal of Electronic Packaging, v 137, p 011007-1-8, 2015.

[21] Arghode, V. K., Joshi, Y., Experimental Investigation of Air Flow through a Perforated Tile in a Raised Floor Data Center, ASME Journal of Electronic Packaging, v 137, p 011011-1-10, 2015.

[22] Arghode, V. K., Joshi, Y., Measurement of Air Flow Rate Sensitivity to Differential Pressure across a Server Rack in a Data Center, ASME Journal of Electronic Packaging, v 137, p 041002-1-6, 2015.

[23] Arghode, V. K., Sundaralingam, V., Joshi, Y., Air Flow Management in a Contained Cold Aisle using Active Fan Tiles for Energy Efficient Data Center Operation, Heat Transfer Engineering, v 37, p 246-256, 2016.

[24] Arghode, V. K., Joshi, Y., Modified Body Force Model for Air Flow through Perforated Floor Tiles in Data Centers, ASME Journal of Electronic Packaging, v 138, p 031002-1-11, 2016.

[25] Arghode, V. K., Kang, T., Joshi, Y., Phelps, W., Michaels, M., Measurement of Air Flow Rate through Perforated Tiles in a Raised Floor Data Center, ASME Journal of Electronic Packaging, v 139, p 011007-1-8, 2017.

[26] Gupta, S. K., Arghode, V. K., Investigation of a Reverse-Cross Flow Combustor with varying Fuel Injection Momentum, Thermal Science and Engineering Process, v 10, p 232-244, 2019.

[27] Chinnappan, A., Kumar, R., Arghode, V. K., Myong, R. S., Transport Dynamics of an Ellipsoidal Particle in Free Molecular Gas Flow Regime, Physics of Fluids, v 31, p 037104-1-15, 2019.

[28] Sharma, P., Jain, N., Arghode, V. K., Investigation of a Low Emission Liquid Fuelled Reverse Crossflow Combustor, ASME Journal of Energy Resources Technology, v 141, p 102202-1-9, 2019.

[29] Bharadwaz, A. N. K., Jain, N., Arghode, V. K., Development of a Standalone, Liquid Fuelled Miniature Power Generation System, ASME Journal of Energy Resources Technology, v 142, p 042004-1-8, 2020.

[30] Pati, B., Taneja, T., Arghode, V. K., Body Force Model for Simulating Air-Flow through Dynamically Oscillating Louvers, ASHRAE Science and Technology for the Built Environment, v 26, p 219-228, 2020.

[31] Gupta, S. K., Kushwaha, A. K., Arghode, V. K., Investigation of Peripheral Vortex Reverse Flow (PVRF) Combustor for Gas Turbine Engines, Energy, v 193, p 116766-1-10, 2020.

[32] Sood, R., Sharma, P., Arghode, V. K., Combustion Characteristics of a Peripheral Vortex Reverse Flow (PVRF) Combustor with Coaxial Fuel Injection, ASME Journal of Energy Resources Technology, v 142, p 052301-1-8, 2020.

[33] Singh, M., Naspoori, S. K., Arghode, V. K., Kumar, R., Study of Nickel-coated Aluminum Nanoparticles using Molecular Dynamic Simulations and Thermodynamic Modeling, Journal of Nanoparticle Research, v 22, p 269-1-16, 2020.

[34] Ahmad, K., Arghode, V. K., Experimental Investigation of a Jet-A1 Fuelled Peripheral Vortex Reverse Flow Combustor, Thermal Science and Engineering Progress, v 21, p 100754, 2021.


[35] Sharma, D., Mahapatra, S., Garnayak, S., Arghode, V. K., Dash, S. K., Reddy, V. M., Development of Reduced Chemical Kinetic Mechanism for Combustion of H2/CO/ C1-C4 Hydrocarbons, Energy and Fuels, v 35, p 718-742, 2021.


[36] Vidiyala, V., Arghode, V. K., Simplified Model for Directional Delivery of Air through Louvers used in Air Conditioning Systems, Journal of the Institution of Engineers (India): Series C, v 102, p 427-437, 2021.


[37] Mitanjali, Arghode, V. K., Investigation of Dual Color Beam Scanning (DCBS) PIV System, Journal of Flow Visualization and Image Processing, v 28, p 1-41, 2021.


[38] Chinnappan, A. K., Kumar, R., Arghode, V. K., Kammara, K. K., Levin, D. A., Correlations for Aerodynamic Coefficients for Prolate Spheroids in the Free Molecular Regime, Computers and Fluids, v 223, p 104934-1-10, 2021.


[39] Chinnappan, A. K., Kumar, R., Arghode, V. K., Modeling of Dusty Gas Flows due to Plume Impingement on a Lunar Surface, Physics of Fluids, v 33, p 053307-1-17, 2021.


[40] Gupta, S. K., Palulli, R., Talei, M., Gordon, R. L., Arghode, V. K., CO Modelling of Premixed Head-on Quenching Flame in the context of Large-Eddy Simulation, International Journal of Heat and Fluid Flow, v 93, p 108895-1-11, 2022.


[41] Mitanjali, Arghode, V. K., Investigation of Dual Color Angular Beam Scanning (DCABS) PIV System, Optics and Lasers in Engineering, v 151, p 106916-1-18, 2022.