Publications
Publications
Chibbhi B, Chandrasekharan N, Chau MQ, and Ma LS* (2025). Molecular Puppeteering: Roles of Ustilago maydis Effectors. Curr. Opin. Plant Biol.
Schuster M* and Ma LS (2025). Editorial overview: Biotic interactions - focus on the apoplastic playground. Curr. Opin Plant Biol. 85:102700. https://doi.org/10.1016/j.pbi.2025.102700.
Chibbhi B, Chau MQ, Tsai WL, OK Teh, and Ma LS* (2025). N-glycosylation Enables Smut Fungal Nge1 Orthologs to Prevent the Escape of Maize Evolved-PMEIs. bioRxiv, https://doi.org/10.1101/2025.04.01.646729.
John EJ, Chau MQ, Hoang CV, Chandrasekharan N, Chibbhi B, and Ma LS* (2023) Fungal cell-wall associated effectors: Sensing, integration, suppression, and protection. Mol Plant Microbe Interact. https://doi.org/10.1094/MPMI-09-23-0142-FI.
Lin YH#, Xu MY#, Hsu CC#, Damei AF, Lee HC, Tsai WL, Hoang CV, Chiang YR, and Ma LS* (2023). Ustilago maydis PR-1-like protein has evolved two distinct domains for dual virulence activities. Nat Commun 14, 5755. https://doi.org/10.1038/s41467-023-41459-4.
Ma LS*, Tsai WL, Damei AF, Kalunke MR, Xu MY, Lin YH, and Lee HC (2023). Maize Antifungal Protein AFP1 Elevates Fungal Chitin Levels by Targeting Chitin Deacetylases and Other Glycoproteins. mBIO. Mar 22; e0009323. https://doi.org/10.1128/mbio.00093-23.
Hoang CV, Chibbhi B., and Ma LS* (2021). A Novel Core Effector Vp1 Promotes Fungal Colonization and Virulence of Ustilago maydis. J. Fungi 2021, 7(8), 589. https://doi.org/10.3390/jof7080589
Ludwig N, Reissmann S, Schipper K., Gonzalez C, Assmann D, Glatter T, Moretti M, Ma LS, Rexer K, Snetselaar K, and Kahmann R* (2021) A cell surface-exposed protein complex with an essential virulence function in Ustilago maydis. Nat. Microbiol. 6: 722–730 https://doi.org/10.1038/s41564-021-00896-x
Yu M, Wang YC, Huang CJ, Ma LS, and Lai EM* (2021) Agrobacterium tumefaciens Deploys a Versatile Antibacterial Strategy To Increase Its Competitiveness. J. Bacteriol. 203 (3):e00490-20 DOI: 10.1128/JB.00490-20
Ma LS, Wang L, Trippel C, Mendoza-Mendoza A, Ullmann S, Moretti M, Carsten A, Kahnt J, Reissmann S, Zechmann B, Bange G, and Kahmann R* (2018). The Ustilago maydis repetitive effector Rsp3 blocks the antifungal activity of mannose-binding maize proteins. Nat. Commun. 9(1): 1711. https://doi.org/10.1038/s41467-018-04149-0
Ma LS#, Pellegrin C#, and Kahmann R* (2018) Repeat-containing effectors of filamentous pathogens and symbionts. Curr. Opin. Microbiol. https://doi.org/10.1016/j.mib.2018.01.007 (#equally contributed)
Lanver D, Tollot M, Schweizer G, Presti LL, Reissmann S, Ma LS, Schuster M, Tanaka S, Liang L, Ludwig N und Kahmann R* (2017). Ustilago maydis effectors and their impact on virulence. Nature Rev. Microbiol. doi:10.1038/nrmicro. 2017. 33
Bondage D, Lin JS, Ma LS, Kuo CH, and Lai EM* (2016). VgrG C-terminus confers the type VI effector transport specificity and is required for binding with PAAR and adaptor-effector complex. Proc Natl Acad Sci USA 113(27): E3931-40.
Ma LS, Hachani A, Lin JS, Filloux A, and Lai EM* (2014) Agrobacterium tumefaciens deploys a superfamily of type VI secretion DNase effectors as weapons for interbacterial competition in planta. Cell Host Microbe 16(1): 94–104.
Lin JS, Wu HH, Hsu PH, Ma LS, Pang YY, Tsai MD, and Lai EM* (2014) Fha interaction with phosphothreonine of TssL activates type VI secretion in Agrobacterium tumefaciens. PLoS Pathogen. 10 (3): e1003991
Lin JS, Ma LS, and Lai EM* (2013) Systematic dissection of the Agrobacterium type VI secretion system reveals machinery and secreted components for subcomplex formation. PLoS One. 8(7): e67647.
Ma LS, Narberhaus F, and Lai EM* (2012) IcmF family protein TssM exhibits ATPase activity and energizes type VI secretion. J. Biol Chem. 287(19):15610-15621.
Ma LS, Lin JS, and Lai EM* (2009) An IcmF family protein, ImpLM, is an integral inner membrane protein interacting with ImpKL, and its walker A motif is required for Type VI secretion system-mediated Hcp secretion in Agrobacterium tumefaciens. J. Bacteriol. 191, 4316-4329.