Thursday
19.10.21
23:59h
Wednesday
27.10.21
16.15-17:45h
Prof. Dr. Isabel Valera & Miriam Rateike
Welcome, Organization, Ethical ML, Causality Intro
Readings: Pearl Primer, Chapter 1&2
ONLINE (link will be shared in due time)
Thursday
28.10.21
23:59h
(information on this will be shared soon with all students that got accepted to the seminar)
Wednesday
03.11.21
16.15-17:45h
Prof. Dr. Isabel Valera & Amir-Hossein Karimi
Causality: Interventions & Counterfactuals
Readings: Pearl Primer, Chapter 3&4
ONLINE (link will be shared in due time)
Wednesday
10.11.21
16.15-17:45h
Readings:
CXPlain: Causal Explanations for Model Interpretation under Uncertainty (Patrick Schwab, Walter Karlen, NeurIPS2019)
Explaining the Behavior of Black-Box Prediction Algorithms with Causal Learning (Numair Sani, Daniel Malinsky,Ilya Shpitser, arXiv 2020)
ONLINE (link will be shared in due time)
Wednesday
17.11.21
16.15-17:45h
Readings:
3. Local Explanations via Necessity and Sufficiency: Unifying Theory and Practice (David Watson, Limor Gultchin,Ankur Taly, Luciano Floridi, UAI 2021)
4. Algorithmic recourse under imperfect causal knowledge: a probabilistic approach (Amir-Hossein Karimi, Julius vonK ̈ugelgen, Bernhard Sch ̈olkopf, Isabel Valera, NeurIPS 2020)
ONLINE (link will be shared in due time)
Monday
22.11.21
23:59h
Wednesday
24.11.21
16.15-17:45h
5. Causal Interpretations of Black-box Models (Qingyuan Zhao And Trevor Hastie,2019)
ONLINE (link will be shared in due time)
Wednesday
01.12.21
16.15-17:45h
Readings:
1. Avoiding Discrimination through Causal Reasoning (Niki Kilbertus, Mateo Rojas-Carulla, Giambattista Parascandolo,Moritz Hardt, Dominik Janzing, Bernhard Schölkopf, NeurIPS 2017)
2. Counterfactual Fairness (Matt Kusner, Joshua Loftus, Chris Russell, Ricardo Silva, NeurIPS 2017)
ONLINE (link will be shared in due time)
Wednesday
08.12.21
16.15-17:45h
Readings:
3. Path-Specific Counterfactual Fairness (Silvia Chiappa, AAAI 2019)
4. The Sensitivity of Counterfactual Fairness to Unmeasured Confounding (Niki Kilbertus, Philip J. Ball, Matt J. Kusner, Adrian Weller, Ricardo Silva, UAI 2020)
ONLINE (link will be shared in due time)
Monday
13.12.21
23:59h
Wednesday
15.12.21
16.15-17:45h
5. When Worlds Collide: Integrating Different Counterfactual Assumptions in Fairness (Chris Russell, Matt J Kusner, Joshua R Loftus, Ricardo Silva, NeurIPS 2017) (no mandatory reading)
ONLINE (link will be shared in due time)
Wednesday
12.01.22
16.15-17:45h
Readings:
1. The risks of invariant risk minimization (Elan Rosenfeld, Pradeep Ravikumar, Andrej Risteski, ICLR 2021)
2. Invariant policy optimization: Towards stronger generalization in reinforcement learning (Anoopkumar Sonar, Vincent Pacelli, Anirudha Majumdar, PMLR 2021)
ONLINE (link will be shared in due time)
Wednesday
19.01.22
16.15-17:45h
Readings:
3. Domain adaptation by using causal inference to predict invariant conditional distributions (Sara Magliacane, Thijs van Ommen, Tom Claassen, Stephan Bongers, Philip Versteeg, Joris M. Mooij, NeurIPS 2018) - Nice link to learn about d-separation.
4. A Causal View on Robustness of Neural Networks (Cheng Zhang, Kun Zhang, Yingzhen Li, NeurIPS 2020)
ONLINE (link will be shared in due time)
Monday
24.01.22
23:59h
Wednesday
26.01.22
16.15-17:45h
5. Adversarial Robustness through the Lens of Causality (Yonggang Zhang, Mingming Gong, Tongliang Liu, Gang Niu, Xinmei Tian, Bo Han, Bernhard Schölkopf, Kun Zhang, arXiv 2021)
ONLINE (link will be shared in due time)