Stable localized orthogonal decomposition in Raviart-Thomas spaces
P. Henning, H. Li, and T. Sprekeler
Submitted. [arXiv]
Numerical approximation of effective diffusivities in homogenization of nondivergence-form equations with large drift by a Lagrangian method
T. Sprekeler, H. Wu, and Z. Zhang
Submitted. [arXiv]
[9] Finite Element Approximation of Stationary Fokker–Planck–Kolmogorov Equations with Application to Periodic Numerical Homogenization
T. Sprekeler, E. Süli, and Z. Zhang
SIAM J. Numer. Anal., 63(3):1315-1343, 2025. [doi]
[8] Characterizations of diffusion matrices in homogenization of elliptic equations in nondivergence-form
X. Guo, T. Sprekeler, and H. V. Tran
Calc. Var. Partial Differential Equations, 64(1):Paper No. 1, 2025. [doi]
[7] Optimal Rate of Convergence in Periodic Homogenization of Viscous Hamilton-Jacobi Equations
J. Qian, T. Sprekeler, H. V. Tran, and Y. Yu
Multiscale Model. Simul., 22(4):1558-1584, 2024. [doi]
[6] Computational Multiscale Methods for Nondivergence-Form Elliptic Partial Differential Equations
P. Freese, D. Gallistl, D. Peterseim, and T. Sprekeler
Comput. Methods Appl. Math., 24(3):649-672, 2024. [doi] [pdf]
[5] Homogenization of Nondivergence-Form Elliptic Equations with Discontinuous Coefficients and Finite Element Approximation of the Homogenized Problem
T. Sprekeler
SIAM J. Numer. Anal., 62(2):646-666, 2024. [doi]
[4] Discontinuous Galerkin and C0-IP finite element approximation of periodic Hamilton–Jacobi–Bellman–Isaacs problems with application to numerical homogenization
E. L. Kawecki and T. Sprekeler
ESAIM Math. Model. Numer. Anal., 56(2):679-704, 2022. [doi] [pdf]
[3] Optimal Convergence Rates for Elliptic Homogenization Problems in Nondivergence-Form: Analysis and Numerical Illustrations
T. Sprekeler and H. V. Tran
Multiscale Model. Simul., 19(3):1453-1473, 2021. [doi]
[2] Mixed Finite Element Approximation of Periodic Hamilton--Jacobi--Bellman Problems With Application to Numerical Homogenization
D. Gallistl, T. Sprekeler, and E. Süli
Multiscale Model. Simul., 19(2):1041-1065, 2021. [doi]
[1] Finite element approximation of elliptic homogenization problems in nondivergence-form
Y. Capdeboscq, T. Sprekeler, and E. Süli
ESAIM Math. Model. Numer. Anal., 54(4):1221-1257, 2020. [doi] [pdf]
Finite element approximation of elliptic homogenization problems in nondivergence-form
DPhil thesis, University of Oxford, 2021. [ora] [pdf] (Advisors: Prof. Endre Süli, Prof. Yves Capdeboscq)
Deep Variational Models
Part III Essay (MASt thesis), University of Cambridge, 2017. [pdf] (Advisor: Prof. Carola-Bibiane Schönlieb)
Nichttriviale Lösungen einer semilinearen Gleichung mit kritischem Sobolev-Exponenten
BSc thesis, University of Dortmund, 2016. [pdf] (Advisor: Prof. Ben Schweizer)