This project revisits Bayesian methods for complex problems like SDE/PDE parameter identification, focusing on stochastic and rough path systems. It aims to provide error guarantees for discretely observed multidimensional SDEs and McKean-Vlasov SDEs, define applicability using critical parameter dimension, develop Bayesian optimization-based solutions, and explore likelihood-based MCMC methods and error-in-operator problems in stochastic diffusions.
Oleg Butkovsky (WIAS & HU Berlin)
Ilja Klebanov (FU Berlin)
Paolo Villani (FU Berlin)
Dana Wrischnig (FU Berlin)
Butkovsky, O., Dareiotis, K., Gerencsér, M., 2025. Strong rate of convergence of the Euler scheme for SDEs with irregular drift driven by Lévy noise. Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, 61(4). https://doi.org/10.1214/24-AIHP1506
Butkovsky, O., Lê, K., Mytnik, L., 2025. Stochastic equations with singular drift driven by fractional Brownian motion. Prob. Math. Phys. 6, 857–912. https://doi.org/10.2140/pmp.2025.6.857
Butkovsky, O. 2025. Lectures on stochastic sewing with applications. https://doi.org/10.48550/ARXIV.2510.12165