The project aims to analyze the asymptotic behavior of rough and singular stochastic partial differential equations, especially at bifurcations, using finite-time Lyapunov exponents and amplitude equations for bifurcation analysis. It also develops a theory of attractors and investigates the convergence speed to invariant measures, focusing on describing mixing times in hydrodynamic limits.
Mazyar Ghani Varzaneh (U Konstanz)
Chara Zhu (FU Berlin)
Ghani Varzaneh, M., Lahbiri, F. Z., Riedel, S. 2025. Invariant manifolds for random parabolic evolution equations with almost sectorial operators. Stochastics and Dynamics, 25(06), 2530001. https://doi.org/10.1142/S0219493725300013
Agresti, A., Blessing (Neamţu), A., Luongo, E., 2025. Global well-posedness of 2D Navier–Stokes with Dirichlet boundary fractional noise. Nonlinearity 38, 075023. https://doi.org/10.1088/1361-6544/ade21c
Ghani Varzaneh, M., Riedel, S., Schmeding, A., Tapia, N., 2025. The geometry of controlled rough paths. Stochastic Processes and their Applications 184, 104594. https://doi.org/10.1016/j.spa.2025.104594
Blessing (Neamţu), A., Blumenthal, A., Breden, M., Engel, M., 2025. Detecting random bifurcations via rigorous enclosures of large deviations rate functions. Physica D: Nonlinear Phenomena 476, 134617. https://doi.org/10.1016/j.physd.2025.134617
Berglund, N., Blessing (Neamţu), A., 2025. Concentration estimates for SPDEs driven by fractional Brownian motion. Electron. Commun. Probab. 30. https://doi.org/10.1214/25-ECP664
Blessing, A., Blömker, D. 2025. On the approximation of finite-time Lyapunov exponents for the stochastic Burgers equation. https://doi.org/10.48550/ARXIV.2510.09460
Blessing, A., Rudik, D. 2025. Taylor-like approximations of center manifolds for rough differential equations.https://doi.org/10.48550/ARXIV.2510.00971
Blessing, A., Ghani Varzaneh, M. 2025. On the negativity of the top Lyapunov exponent for stochastic differential equations driven by fractional Brownian motion. https://doi.org/10.48550/ARXIV.2510.11531
Blessing, A., Ghani Varzaneh, M., 2025. An integrable bound for semilinear rough partial differential equations with unbounded diffusion coefficients. https://doi.org/10.48550/ARXIV.2503.04415
Blessing, A., Ghani Varzaneh, M., Seitz, T., 2025. A mild rough Gronwall Lemma with applications to non-autonomous evolution equations. https://doi.org/10.48550/ARXIV.2503.03628
Blessing, A., Seitz, T., Sonner, S., Tang, B.Q., 2025. Pathwise mild solutions for superlinear stochastic evolution equations and their attractors. https://doi.org/10.48550/ARXIV.2502.01209
Ghani Varzaneh, M., Riedel, S., 2024. Singular stochastic delay equations driven by fractional Brownian motion: Dynamics, longtime behaviour, and pathwise stability. https://doi.org/10.48550/ARXIV.2411.04590
Blessing, A., Rosati, T., 2024. Quantitative instability for stochastic scalar reaction-diffusion equations. https://doi.org/10.48550/ARXIV.2406.04651