Preprints:

35. Bao-Ngoc Tran, Juan Yang,  Global solvability for doubly degenerate nutrient taxis system with a wide range of bacterial responses in physical dimension, arXiv:2508.03268, 45 pages, 2025


34. L.T. Thanh Bui, T.K. Loan Huynh, Q. Bao Tang, and Bao-Ngoc Tran. Parabolic-elliptic and indirect-direct simplifications in chemotaxis systems driven by indirect signalling, arXiV:2508.01436, 43 pages, 2025.


33. Cordula Reisch, Bao-Ngoc Tran, and Juan Yang. Rigorous fast signal diffusion limit and convergence rates with the initial layer effect in a competitive chemotaxis system, arXiv:2405.17392, 48 pages, 2024.


32. Laurent Desvillettes, Christian Kuehn, Jan-Eric Sulzbach, Tang Quoc Bao, and Bao-Ngoc Tran. Slow Manifolds for PDE with Fast Reactions and Small Cross Diffusion, arxiv.org:2501.16775, 51 pages, 2025.


31. Jeff Morgan, Cinzia Soresina, Tang Quoc Bao, and Bao-Ngoc Tran. Singular limit and convergence rate via projection method in a model for plant-growth dynamics with autotoxicity, arXiv:2408.06177, 37 pages,  2024.

Publications:

[30] Bao Quoc Tang and Bao-Ngoc Tran. Rigorous derivation of Michaelis-Menten kinetics in the presence of slow diffusion, SIAM Journal on Mathematical Analysis, Vol. 56, Iss. 5, 34 pages, 2024 (arXiv version, Published version).

[29] Huy Tuan Nguyen, B-N.T. Inverse initial-value problems for time-fractional diffusion equations in fractional Sobolev spaces, Math. Nachr. 297 (2024), no. 11, 41824213.

[28] Dinh Ke Tran, B-N.T., Huy Tuan Nguyen. Final value problem governed by a class of time-space fractional pseudo-parabolic equations with weak nonlinearities, Math. Methods Appl. Sci., 47 (2024), no. 6, 5307–5328.

[27] B-N.T., Erkan Nane, Nguyen Huy Tuan. On a terminal value problem for stochastic space-time fractional wave equations. Math. Methods Appl. Sci., 46 (2023), no. 1, 1206–1226.

[26] B-N.T., Tri Vo Viet. Global existence and continuous dependence on parameters for space-time fractional pseudo-parabolic inclusion, J. Nonlinear Convex Anal., 23 (2022), no. 7, 1469–1485.

[25] Tomás Caraballo, B-N.T., Tran Ngoc Thach, Nguyen Huy Tuan.On a stochastic nonclassical diffusion equation with standard and fractional Brownian motion, Stoch. Dyn., 22 (2022), Number 2, Paper no. 2140011, 45 pp.

[24] Nguyen Huy Tuan, Daniel Lesnic, Tran Ngoc Thach, B-N.T. Regularization of the backward stochastic heat conduction problem, J. Inv. Ill-Posed Problems, 30 (2022), no. 3, 351–362.

[23] B-N.T., Nguyen Huy Tuan. Existence of mild solutions to semilinear fractional evolution equation using Krasnoselskii fixed point theorem, Filomat, 36 (2022), no. 4, 1099–1112.

[22] Quoc Nam Danh Hua, Long Le Dinh, O’Regan Donal, B-N.T., Tuan, Nguyen Huy. Identification of the right-hand side in a bi-parabolic equation with final data, Appl. Anal., 101 (2022), no. 4, 1157–1175.

[21] B-N.T., Tran Ngoc Thach, Donal O’regan, Nguyen Huy Tuan. On inverse initial value problems for the stochastic strongly damped wave equation, Appl. Anal., 101 (2022), no. 2, 527–544.

[20] B-N.T., Nguyen Huy Tuan, Sakthivel Rathinasamy, Donal O’Regan. Analysis of nonlinear fractional diffusion equations with a Riemann-Liouville derivative, Evol. Equ. Control Theory, 11 (2022), no. 2, 439–455.

[19] Tomás Caraballo, B-N.T., Nguyen Huy Tuan and Renhai Wang, On a nonlinear Volterra integrodifferential equation involving fractional derivative with Mittag-Leffler kernel, Proc. Am. Math. Soc., 149 (2021), no. 8, 3317–3334.

[18] B-N.T., Vo Viet Tri, Zakia Hammouch, Nguyen Huu Can. Stability of a class of problems for time-space fractional pseudo-parabolic equation with datum measured at terminal time, Appl. Numer. Math., 167 (2021), 308–329. 

[17] Tomás Caraballo, B-N.T., Thach Tran Ngoc, Huy Tuan Nguyen. On initial value and terminal value problems for subdiffusive stochastic Rayleigh-Stokes equation, Discrete Contin. Dyn. Syst. - B, 26 (2021), no. 8, 4299–4323.

[16] B-N.T., Tomas Caraballo, Nguyen Huy Tuan, Yong Zhou. Existence and regularity results for terminal value problem for nonlinear fractional wave equations, Nonlinearity, 34 (2021), no. 3, 1448–1502.

[15] B-N.T., Nguyen Hoang Luc, Au Vo Van, Huy Tuan Nguyen, Yong Zhou. Existence and regularity of inverse problem for the nonlinear fractional Rayleigh-Stokes equations, Math. Methods Appl. Sci., 44 (2021), no. 3, 2532–2558.

[14] Tran Thanh Binh, Nguyen Huy Tuan, B-N.T. Holder continuity of mild solutions of space-time fractional stochastic heat equation driven by colored noise, Eur. Phys. J. Plus, 136 (2021), 21 pp.

[13] Nguyen Huy Tuan, Donal O’Regan, B-N.T. Continuity with respect to fractional order of the time fractional diffusion-wave equation, Evol. Equ. Control Theory, 9 (2020), no. 3, 773–793.

[12] B-N.T., Dumitru Baleanu, Le Thi Minh Duc, Nguyen Huy Tuan. Regularity results for fractional diffusion equations involving fractional derivative with Mittag-Leffler kernel, Math. Methods Appl. Sci., 43 (2020), no. 12, 7208–7226.

[11] B-N.T., Nguyen Huy Tuan, Yong Zhou, Donal O’Regan. On existence and regularity of a terminal value problem for the time fractional diffusion equation, Inverse Problem, 36 (2020), no. 5, 055011, 41 pp.

[10] Nguyen Huy Tuan, B-N.T., Dumitru Baleanu, Donal O’regan. On well-posedness of the sub-diffusion equation with new derivative model, Commun. Nonlinear Sci. Numer. Simul., 89 (2020), 105332, 26 pp.

[9] B-N.T., Au Vo Van, Zhou Yong, Tuan Nguyen Huy. On a final value problem for fractional reaction-diffusion equation with Riemann-Liouville fractional derivative, Math. Methods Appl. Sci., 43 (2020), no. 6, 3086–3098.

[8] B-N.T., Yong Zhou, Donal O’regan, Nguyen Huy Tuan. On a terminal value problem for pseudoparabolic equations involving riemann-liouville fractional derivatives, Appl. Math. Lett., 106 (2020), 106373, 9 pp.

[7] B-N.T., Nguyen Huy Tuan, Mokhtar Kirane. Regularization of sideways problem for a time fractional diffusion equation with nonlinear source, J. Inv. Ill-Posed Problems, 28 (2020), no. 2, 211–235.

[6] Nguyen Huy Tuan, B-N.T., Huynh Nhat Le, Mokhtar Kirane. Existence and uniqueness of mild solution of time-fractional semilinear differential equations with a nonlocal final condition, Comput. Math. Appl., 78 (2019), no. 5, 1651–1668.

[5] Nguyen Huy Tuan, Amar Debbouche, B-N.T. Existence and regularity of final value problems for time fractional wave equations, Comput. Math. Appl., 78 (2019), no. 5, 1396–1414.

[4] Nguyen Duc Phuong, Nguyen Huy Tuan, Dumitru Baleanu, B-N.T. On Cauchy problem for nonlinear fractional differential equation with random discrete data, Appl Math Comput., 362 (2019), 124458, 16 pp.

[3] B-N.T., Nguyen Huy Tuan, Donal O’Regan. Existence and uniqueness of mild solutions for a final value problem for nonlinear fractional diffusion systems, Commun. Nonlinear Sci. Numer. Simul., 78 (2019), 104882, 13 pp.

[2] Nguyen Huy Tuan, Huynh Nhat Le, B-N.T., Yong Zhou. On a backward problem for nonlinear fractional diffusion equations, Appl. Math. Lett., 92 (2019), 76–84.

[1] Nguyen Huy Tuan, B-N.T., Salih Tatar, Le Dinh Long. Recovery of the solute concentration and dispersion flux in an inhomogeneous time fractional diffusion equation, J. Comput. Appl. Math., 342 (2018), 96–118.


Conference papers:

[2] Cinzia Soresina, Bao Quoc Tang, B-N.T.  Fast-reaction limits for predator–prey reaction–diffusion systems: improved convergence, To appear in AMS Contemporary Mathematics, 2023.

[1] Hoan Luu Vu Cam, Ho Duy Binh, B-N.T. A truncation regularization method for a time fractional diffusion equation with an in-homogeneous source, ITM Web of Conferences. vol. 20. EDP Sciences, 2018.