Accepted Papers

(With GatherTown spots [II-])

    1. [II-A1] Analytically Tractable Inference in Deep Neural Networks
      Luong-Ha Nguyen, James-A. Goulet [paper] [poster] [talk]

    2. [II-A3] Whittle Networks: A Deep Likelihood Model for Time Series
      Zhongjie Yu, Fabrizio Ventola, Kristian Kersting [paper] [poster] [talk]

    3. [II-A2] RECOWNs: Probabilistic Circuits for Trustworthy Time Series Forecasting
      Nils Thoma, Zhongjie Yu, Fabrizio Ventola, Kristian Kersting [paper] [poster] [talk]

    4. [II-A5] Leveraging Probabilistic Circuits for Nonparametric Multi-Output Regression
      Zhongjie Yu, Mingye Zhu, Martin Trapp, Arseny Skryagin, Kristian Kersting [paper] [poster] [talk]

    5. [II-B1] Cluster Trellis: Data Structures & Algorithms for Exact Inference in Hierarchical Clustering
      Craig Greenberg, Sebastian Macaluso, Nicholas Monath, Ji Ah Lee, Patrick Flaherty, Kyle Cranmer, Andrew McGregor, Andrew McCallum [paper] [poster] [talk]

    6. [II-B2] Easy Variational Inference for Categorical Observations via a New View of Diagonal Orthant Probit Models
      Michael Wojnowicz, Shuchin Aeron, Eric Miller, Michael C Hughes [paper] [poster] [talk]

    7. [II-B3] Improving Efficiency and Accuracy of Causal Discovery Using a Hierarchical Wrapper
      Shami Nisimov, Yaniv Gurwicz, Raanan Yehezkel Rohekar, Gal Novik [paper] [poster] [talk]

    8. [II-B4] On Recovering from Modeling Errors Using Testing Bayesian Networks
      Haiying Huang, Adnan Darwiche [paper] [poster] [talk]

    9. [II-B5] No-Regret Approximate Inference via Bayesian Optimisation
      Rafael Oliveira, Lionel Ott, Fabio Ramos [paper] [poster] [talk]

    10. [II-C1] HyperSPNs: Compact and Expressive Probabilistic Circuits
      Andy Shih, Dorsa Sadigh, Stefano Ermon [paper] [poster] [talk]

    11. [II-C2] Probabilistic Circuits for Variational Inference in Discrete Graphical Models
      Andy Shih, Stefano Ermon [paper] [poster] [talk]

    12. [II-G1] Probabilistic Sufficient Explanations
      Eric Wang, Pasha Khosravi, Guy Van den Broeck [paper][poster] [talk]

    13. [II-C3] Provable Guarantees on the Robustness of Decision Rules to Causal Interventions
      Benjie Wang, Clare Lyle, Marta Kwiatkowska [paper][poster] [talk]

    14. [II-C4] Conditionally Tractable Density Estimation using Neural Networks
      Hailiang Dong, Chiradeep Roy, Tahrima Rahman, Vibhav Giridhar Gogate, Nicholas Ruozzi [poster] [talk]

    15. [II-C5] Dynamic Cutset Networks
      Chiradeep Roy, Tahrima Rahman, Hailiang Dong, Vibhav Giridhar Gogate, Nicholas Ruozzi [paper] [poster] [talk]

    16. [II-D1] CInC Flow: Characterizable Invertible 3X3 Convolution
      Sandeep Nagar, Marius Dufraisse, Girish Varma [paper] [poster] [talk]

    17. [II-G2] Tractable Regularization of Probabilistic Circuits
      Anji Liu, Guy Van den Broeck [paper] [poster] [talk]

    18. [II-A4] Interventional Sum-Product Networks: Causal Inference with Tractable Probabilistic Models
      Matej Zecevic, Devendra Singh Dhami, Athresh Karanam, Sriraam Natarajan, Kristian Kersting [paper] [poster] [talk]

    19. [II-D2] Random Probabilistic Circuits
      Nicola Di Mauro, Gennaro Gala, Marco Iannotta, Teresa M.A. Basile [paper] [poster] [talk]

    20. [II-D3] Structural Learning of Probabilistic Sentential Decision Diagrams under Partial Closed-World Assumption
      Alessandro Antonucci, Alessandro Facchini, Lilith Mattei [paper] [poster] [talk]

    21. [II-D4] Negative Weights in Hinge-Loss Markov Random Fields
      Charles Andrew Dickens, Eriq Augustine, Connor Pryor, Lise Getoor [paper] [poster] [talk]

    22. [II-D5] Fast And Accurate Learning of Probabilistic Circuits by Random Projections
      Renato Geh, Denis Mauá [paper] [poster] [talk]

    23. [II-G4] Probabilistic Generating Circuits
      Honghua Zhang, Brendan Juba, Guy Van den Broeck [paper] [poster] [talk]

    24. [II-F1] Automatic variational inference with cascading flows
      Luca Ambrogioni, Gianluigi Silvestri, Marcel van Gerven [paper] [poster] [talk]

    25. [II-E1] Trumpets: Injective Flows for Inference and Inverse Problems
      Konik Kothari, AmirEhsan Khorashadizadeh, Maarten V. de Hoop, Ivan Dokmanić [paper] [poster] [talk]

    26. [II-G5] IL-Strudel : Independence-Based Learning of Structured-Decomposable Probabilistic Circuit Ensembles
      Shreyas Kowshik, Yitao Liang, Guy Van den Broeck [paper] [poster] [talk]

    27. [II-E5] Composing Normalizing Flows for Inverse Problems
      Jay Whang, Erik Lindgren, Alex Dimakis [paper] [poster] [talk]

    28. [II-H1] Is Parameter Learning via Weighted Model Integration Tractable?
      Zhe Zeng, Paolo Morettin, Fanqi Yan, Antonio Vergari, Andrea Passerini, Guy Van den Broeck [paper] [poster] [talk]

    29. [II-F5] Exact and Efficient Adversarial Robustness with Decomposable Neural Networks
      Pranav Shankar Subramani, Antonio Vergari, Gautam Kamath, Robert Peharz [paper] [poster] [talk]

    30. [II-G3] A Compositional Atlas of Tractable Circuit Operations for Probabilistic Inference
      Antonio Vergari, YooJung Choi, Anji Liu, Stefano Teso, Guy Van den Broeck [paper] [poster] [talk]