Tendremos charlas en las que se presentarán algunos de los prerrequisitos para seguir el minicurso que imparte Jonny Evans. Luego continuaremos con el minicurso en sí y ponencias sobre temas relacionados.
Todas las charlas serán en la sala de usos múltiples 1. Primer piso del edificio Felipe Villanueva.
12:20--13:30. Prerrequisitos I. (Mauricio Bustamante).
14:30-14:50. Café y galletas.
14:50--16:00. Prerrequisitos II. (Mauricio Bustamante).
11:10--12:10. Prerrequisitos III. (Mauricio Bustamante).
12:20--13:30. Charla sobre geometría algebraica y topología (Angelica Simonetti).
14:30--14:50. Café y galletas.
14:50--16:00. Mini-curso: Singularidades y topología (Jonny Evans).
11:10--12:10. Charla sobre teoría de grupos y topología. (Eduardo Reyes).
12:20--13:30. Charla sobre geometría diferencial y topología (Pedro Gaspar).
14:30--14:50. Café y galletas.
14:50--16:00. Mini-curso: Singularidades y topología II (Jonny Evans).
Lecturas recomendadas:
++ Plane algebraic curves. (Brieskorn y Knörrer). Contains many examples, techniques and pictures. It covers the material on links of algebraic curves, and even contains Newton's original letter where he explains his "method of rotating rulers".
++ Eight faces of the Poincaré homology sphere. (Kirby y Scharlemann). A worked example of the sort we were doing, where they give 8 different descriptions of the link of x^2+y^3+z^5=0 and prove they are all equivalent.
++ Lectures on resolution of singularities. (Kóllar). The first chapter has Puiseaux expansions.
++ Topology from the differentiable viewpoint (Milnor). Gives a complete proof of the nontriviality of the Hopf fibration. A gorgeous book.
++ Classical tessellations and three-manifolds (Montesinos). Just as you can describe the torus as a square with its sides identified, you can sometimes describe links of surface singularities as identification spaces of polyhedra. This book focuses on that point of view.
++ Seifert manifolds (Orlik). This book gives the full story on Seifert fibrations as a generalisation of the Hopf fibration.
++ Knots and links (Rolfsen). This book has examples of branched covers of knots (amongst other things) like we saw for the lens space L(3,2).
++ Algebraic Curves (Walker). This very readable book has some very nice material on singularities of algebraic curves, including Puiseaux series.