Eto, T., Garcke, H., Nürnberg, R., A parametric finite element method for a degenerate multi-phase Stefan problem with triple junctions., arXiv:2505.13165 (2025) accepted for publication in Computational Method and Applied Mathematics.
Eto, T., Giga, Y., A convergence result for a minimizing movement scheme for mean curvature flow with prescribed contact angle in a curved domain., Advances in Mathematical Sciences and Applications 34, no. 1, 115–147 (2025).
Eto, T., Garcke, H., Nürnberg, R., A structure-preserving finite element method for the multi-phase Mullins-Sekerka problem with triple junctions., Numerische Mathematik 156, 1479–1509 (2024). https://doi.org/10.1007/s00211-024-01414-x
Eto, T., A Rapid Numerical Method for the Mullins–Sekerka Flow with Application to Contact Angle Problems., J Sci Comput 98, 63 (2024). https://doi.org/10.1007/s10915-024-02469-6
Eto, T., Giga, Y., On a minimizing movement scheme for mean curvature flow with prescribed contact angle in a curved domain and its computation., Annali di Matematica Pura ed Applicata 203, 1195–1221 (2024). https://doi.org/10.1007/s10231-023-01398-9
Eto, T., Giga, Y., Ishii, K., An area-minimizing scheme for anisotropic mean-curvature flow., Adv. Differential Equations 17, no. 11-12, 1031–1084 (2012). https://doi.org/10.57262/ade/1355702938
Eto, T., Giga, Y., Ishii, K., An area-minimizing scheme for anisotropic mean-curvature flow., Proc. Japan Acad. Ser. A Math. Sci. 88, no. 1, 7–10 (2012). https://doi.org/10.3792/pjaa.88.7
Eto, T., Kawashima, R., A hyperbolic finite difference scheme for anisotropic diffusion equations: preserving the discrete maximum principle., arXiv:2508.09509 (2025).
Eto, T., Giga, Y., On existence and uniqueness for transport equations with non-smooth velocity fields under inhomogeneous Dirichlet data., arXiv:2501.12575 (2025).
Eto, T., Giga, Y, A Minimizing Movement Scheme for Mean Curvature Flow: Addressing Contact Angles in Regular Domains, Hokkaido University technical report series in mathematics, Proceedings of 49th Sapporo Symposium on Partial Differential Equations. (2024)
Eto, T., Research Stay in Regensburg, Laboratories, Bulletin of the Japan Society for Industrial and Applied Mathematics, The Japan Society for Industrial and Applied Mathematics, Volume 34, Issue 2. (2024)
Eto, T., Numerical Analysis for Geometric Evolution Equations, Thesis (Doctor), Graduate School of Mathematical Sciences, The University of Tokyo, Japan. (2024). https://ndlsearch.ndl.go.jp/books/R000000025-I009260006692932
Eto, T., On a length minimizing scheme for the curve shortening problem, Thesis (Master), Graduate School of Mathematical Sciences, The University of Tokyo, Japan. (2008).