CODE :
import numpy as np
import pandas as pd
import os, sys
df = pd.read_csv("parkinsons.data")
df.tail()
df.describe()
df.info()
df.shape
features = df.loc[:, df.columns != 'status'].values[:, 1:]
labels = df.loc[:, 'status'].values
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler((-1, 1))
X = scaler.fit_transform(features)
y = labels
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test=train_test_split(X, y, test_size=0.30)
from xgboost import XGBClassifier
from sklearn.metrics import accuracy_score
model = XGBClassifier()
model.fit(x_train, y_train)
y_prediction = model.predict(x_test)
print("Accuracy Score is", accuracy_score(y_test, y_prediction) * 100)