Research Statement
Our lab is dedicated to understanding the molecular, genetic, and biochemical mechanisms that govern plant and microalgae resilience, development, and interactions with the environment. By integrating approaches from genetics, molecular biology, biotechnology, and physiological measurements, we aim to uncover fundamental principles that can be leveraged for sustainable plant growth and microalgal biotope.
1. Plant Stress Responses and Adaptation Mechanisms
Plants constantly face environmental challenges such as drought, pathogen attack, and heavy metal stress. Our research explores the intricate signaling networks that regulate plant responses to these stressors, including hormonal crosstalk, calcium signaling, and transcriptional regulation. By identifying key regulatory genes and pathways, we aim to develop strategies for enhancing plant resilience in changing environments.
Publications
(10)
Ndathe, R.; Kato, N. Phosphatidic Acid Produced by Phospholipase Dα1 and Dδ Is Incorporated into the Internal Membranes but Not Involved in the Gene Expression of RD29A in the Abscisic Acid Signaling Network in Arabidopsis Thaliana. Frontiers in Plant Science 2024, 15. https://doi.org/10.3389/fpls.2024.1356699.
(9)
Ndathe, R.; Dale, R.; Kato, N. Dynamic Modeling of ABA-Dependent Expression of the Arabidopsis RD29A Gene. Frontiers in Plant Science 2022, 13. https://doi.org/10.3389/fpls.2022.928718.
(8)
Kim, H. J.; Kato, N.; Ndathe, R.; Thyssen, G. N.; Jones, D. C.; Ratnayaka, H. H. Evidence for Thermosensitivity of the Cotton (Gossypium Hirsutum L.) Immature Fiber (Im) Mutant via Hypersensitive Stomatal Activity. PLOS ONE 2021, 16 (12), e0259562. https://doi.org/10.1371/journal.pone.0259562.
(7)
Brauer, E. K.; Ahsan, N.; Dale, R.; Kato, N.; Coluccio, A. E.; Piñeros, M. A.; Kochian, L. V.; Thelen, J. J.; Popescu, S. C. The Raf-like Kinase ILK1 and the High Affinity K+ Transporter HAK5 Are Required for Innate Immunity and Abiotic Stress Response. Plant Physiology 2016, 171 (2), 1470–1484. https://doi.org/10.1104/pp.16.00035.
(6)
Fontenot, E. B.; DiTusa, S. F.; Kato, N.; Olivier, D. M.; Dale, R.; Lin, W.-Y.; Chiou, T.-J.; Macnaughtan, M. A.; Smith, A. P. Increased Phosphate Transport of Arabidopsis ThalianaPht1;1 by Site-Directed Mutagenesis of Tyrosine 312 May Be Attributed to the Disruption of Homomeric Interactions. Plant, Cell and Environment 2015, 38 (10), 2012–2022. https://doi.org/10.1111/pce.12522.
(5)
Joshi, R.; Ramanarao, M. V.; Lee, S.; Kato, N.; Baisakh, N. Ectopic Expression of ADP Ribosylation Factor 1 (SaARF1) from Smooth Cordgrass (Spartina Alterniflora Loisel) Confers Drought and Salt Tolerance in Transgenic Rice and Arabidopsis. Plant Cell, Tissue and Organ Culture 2014, 117 (1), 17–30. https://doi.org/10.1007/s11240-013-0416-x.
(4)
Yun, H. S.; Kwaaitaal, M.; Kato, N.; Yi, C.; Park, S.; Sato, M. H.; Schulze-Lefert, P.; Kwon, C. Requirement of Vesicle-Associated Membrane Protein 721 and 722 for Sustained Growth during Immune Responses in Arabidopsis. Molecules and cells 2013, 35 (6), 481–488. https://doi.org/10.1007/s10059-013-2130-2.
(3)
Lee, H. Y.; Bowen, C. H.; Popescu, G. V.; Kang, H.-G.; Kato, N.; Ma, S.; Dinesh-Kumar, S.; Snyder, M.; Popescu, S. C. Arabidopsis RTNLB1 and RTNLB2 Reticulon-like Proteins Regulate Intracellular Trafficking and Activity of the FLS2 Immune Receptor. Plant Cell 2011, 23 (9), 3374–3391. https://doi.org/10.1105/tpc.111.089656.
(2)
Kato, N.; Bai, H. Expression, Localization and Interaction of SNARE Proteins in Arabidopsis Are Selectively Altered by the Dark. Plant Signaling and Behavior2010, 5 (11). https://doi.org/10.4161/psb.5.11.13480.
(1)
Baxter, J.; Moeder, W.; Urquhart, W.; Shahinas, D.; Chin, K.; Christendat, D.; Kang, H.-G.; Angelova, M.; Kato, N.; Yoshioka, K. Identification of a Functionally Essential Amino Acid for Arabidopsis Cyclic Nucleotide Gated Ion Channels Using the Chimeric AtCNGC11/12 Gene. Plant Journal 2008, 56 (3), 457–469. https://doi.org/10.1111/j.1365-313X.2008.03619.x.
2. Plant Molecular Regulation of Development and Growth
We investigate the genetic and molecular factors that control cell cycel and growth. Using functional genomics, gene editing, and transcriptomics, our lab seeks to elucidate how plants regulate their growth and adapt to environmental cues. These insights have broad applications in improving crop yield and optimizing plant architecture for agricultural sustainability.
Publications
(6)
Wang, K.; Ndathe, R.; Kumar, N.; Zeringue, E. A.; Kato, N.; Larkin, J. C. The CDK Inhibitor SIAMESE Targets Both CDKA;1 and CDKB1 Complexes to Establish Endoreplication in Trichomes. 2020. https://doi.org/10.1101/2020.03.12.989079.
(5)
Kumar, N.; Dale, R.; Kemboi, D.; Zeringue, E. A.; Kato, N.; Larkin, J. C. Functional Analysis of Short Linear Motifs in the Plant Cyclin-Dependent Kinase Inhibitor SIAMESE. Plant Physiology 2018, 177 (4), 1569–1579. https://doi.org/10.1104/pp.18.00147.
(4)
Kumar, N.; Harashima, H.; Kalve, S.; Bramsiepe, J.; Wang, K.; Sizani, B. L.; Bertrand, L. L.; Johnson, M. C.; Faulk, C.; Dale, R.; Simmons, L. A.; Churchman, M. L.; Sugimoto, K.; Kato, N.; Dasanayake, M.; Beemster, G.; Schnittger, A.; Larkin, J. C. Functional Conservation in the SIAMESE-RELATED Family of Cyclin-Dependent Kinase Inhibitors in Land Plants. Plant Cell 2015, 27 (11), 3065–3080. https://doi.org/10.1105/tpc.15.00489.
(3)
Ichikawa, M.; Hirano, T.; Enami, K.; Fuselier, T.; Kato, N.; Kwon, C.; Voigt, B.; Schulze-Lefert, P.; Baluka, F.; Sato, M. H. Syntaxin of Plant Proteins SYP123 and SYP132 Mediate Root Hair Tip Growth in Arabidopsis Thaliana. Plant and Cell Physiology 2014, 55 (4), 790–800. https://doi.org/10.1093/pcp/pcu048.
(2)
Kato, N.; He, H.; Steger, A. P. A Systems Model of Vesicle Trafficking in Arabidopsis Pollen Tubes. Plant Physiology 2010, 152 (2), 590–601. https://doi.org/10.1104/pp.109.148700.
(1)
Churchman, M. L.; Brown, M. L.; Kato, N.; Kirik, V.; Hülskamp, M.; Inzé, D.; De Veylder, L.; Walker, J. D.; Zheng, U.; Oppenheimer, D. G.; Gwin, T.; Churchman, J.; Larkin, J. C. SIAMESE, a Plant-Specific Cell Cycle Regulator, Controls Endoreplication Onset in Arabidopsis Thaliana. Plant Cell 2006, 18 (11), 3145–3157. https://doi.org/10.1105/tpc.106.044834.
3. Microalgae Responses to Environments
Our lab studies motility, chemotaxis, and lipid metabolism in Chlamydomonas reinhardtii. We investigate ciliary beat regulation, showing that COP5/HKR1 and CAV2 drive ammonium chemotaxis through a eukaryotic-like signaling pathway, yet with bacterial-like run-and-tumble motility. We also discovered light-enhanced, collective chemotaxis, regulated by AGG1. In lipid metabolism, Chlamydomonas sequesters rather than oxidizes fatty acids, favoring membrane turnover. We identified peroxisomal diversity and novel fatty acid-induced microbodies (FAIMs) formed under vesicle trafficking disruption. Our work links microbial locomotion and metabolism, offering insights into cell biology, bioenergy, and microalgal adaptation to environmental changes.
Publications
(5)
Strain, A.; Kratzberg, N.; Vu, D.; Miller, E.; Wakabayashi, K.; Melvin, A.; Kato, N. COP5/HKR1 Changes Ciliary Beat Pattern and Biases Cell Steering during Chemotaxis in Chlamydomonas Reinhardtii. Scientific Reports 2024, 14 (1). https://doi.org/10.1038/s41598-024-81455-2.
(4)
Nelson, G.; Strain, A.; Isu, A.; Rahnama, A.; Wakabayashi, K.; Melvin, A. T.; Kato, N. Cells Collectively Migrate during Ammonium Chemotaxis in Chlamydomonas Reinhardtii. Scientific Reports 2023, 13 (1). https://doi.org/10.1038/s41598-023-36818-6.
(3)
Kato, N.; McCuiston, C.; Szuska, K. A.; Lauersen, K. J.; Nelson, G.; Strain, A. Chlamydomonas Reinhardtii Alternates Peroxisomal Contents in Response to Trophic Conditions. Cells 2022, 11 (17), 2724. https://doi.org/10.3390/cells11172724.
(2)
Kato, N.; Nelson, G.; Lauersen, K. J. Subcellular Localizations of Catalase and Exogenously Added Fatty Acid in Chlamydomonas Reinhardtii. Cells 2021, 10(8), 1940. https://doi.org/10.3390/cells10081940.
(1)
Kato, N.; Dong, T.; Bailey, M.; Lum, T.; Ingram, D. Triacylglycerol Mobilization Is Suppressed by Brefeldin A in Chlamydomonas Reinhardtii. Plant and Cell Physiology 2013, 54 (10), 1585–1599.https://doi.org/10.1093/pcp/pct103.