NOTE: For many of these references, I have pdfs. This list includes all known papers on the structure of fossil trilobite eyes. If you think I am missing something, please let me know!
Trilobite eyes (119)
1. Aceñolaza, F. G., Tortello, M. F. & Rábano, I. (2001). The eyes of the early Tremadoc olenid trilobite Jujuyaspis keideli Kobayashi, 1936. Journal of Paleontology 75, 346–350.
2. Barrientos, Y. & Laverack, M. S. (1986). The larval crustacean dorsal organ and its relationship to the trilobite median tubercle. Lethaia 19, 309–313.
3. Bennett, C. E., Williams, M., Leng, M. J., Lee, M. R., Bonifacie, M., Calmels, D., Fortey, R. A., Laurie, J. R., Owen, A. W., Page, A. A., Munnecke, A. & Vandenbroucke, T. R. A. (2018). Oxygen isotope analysis of the eyes of pelagic trilobites: Testing the application of sea temperature proxies for the Ordovician. Gondwana Research 57, 157–169.
4. Böhmecke, E. (1995). Unterschiedlich konstruiert: Trilobitenaugen [Differently constructed: trilobite eyes]. Fossilien 12, 46–49.
5. Brassel, G. (1988). Schizochroale Facettenaugen bei Phacopiden des Hunsrückscheifers [Schizochroal compound eyes in phacopids of the Hunsrück slates]. Natur und Mensch 1988, 21–23.
6. Brink, A. S. (1951). On the compound eye of an unusually large trilobite from the Bokkeveld Beds south of Steytlerville, Cape Province. South African Journal of Science 47, 162–164.
7. Bruton, D. L. & Haas, W. (2003). The puzzling eye of Phacops. Special Papers in Palaeontology 70, 349–361.
8. Bruton, D. L. (2006). A reconstruction of Telephina bicuspis, a pelagic trilobite from the Middle Ordovician of the Oslo Region, Norway. Lethaia 39, 359–364.
9. Budil, P. & Hörbinger, F. (2007). Exoskeletal structures and ultrastructures in Lower Devonian dalmanitid trilobites of the Prague Basin (Czech Republic). Bulletin of Geosciences 82, 27–36.
10. Campbell, K. S. W. (1975). The functional anatomy of phacopid trilobites: musculature and eyes. Journal and Proceedings, Royal Society of New South Wales 108, 168–188.
11. Clarke, J. M. (1889). The structure and development of the visual area in the trilobite, Phacops rana, Green. Journal of Morphology 2, 253–274.
12. Clarkson, E. N. K. (1966). Schizochroal eyes and vision of some Silurian acastid trilobites. Palaeontology 9, 1–29.
13. Clarkson, E. N. K. (1966). Schizocroal eyes and vision in some phacopid trilobites. Palaeontology 9, 464–487.
14. Clarkson, E. N. K. (1967). Environmental significance of eye-reduction in trilobites and recent arthropods. Marine Geology 5, 367–375.
15. Clarkson, E. N. K. (1967). Fine structure of the eye in two species of Phacops (Trilobita). Palaeontology 10, 603–616.
16. Clarkson, E. N. K. (1968). Structure of the eye of Crozonaspis struvei (Trilobita, Dalmanitidae, Zeliszkellinae). Senckenbergiana lethaea 49, 383–393.
17. Clarkson, E. N. K. (1969). Dimorphism of the eye in Weberides shunnerensis (King) [Trilobita]. In: Westermann, G. E. G. (ed.) Sexual dimorphism in fossil Metazoa and taxonomic implications. Stuttgart: E. Schweizerbart’sche Verlagsbuchhandlung (Nägele u. Obermiller), 185–195.
18. Clarkson, E. N. K. (1969). On the schizocroal eyes of three species of Reedops (Trilobita, Phacopidae) from the Lower Devonian of Bohemia. Transactions of the Royal Society of Edinburgh 68, 183–205.
19. Clarkson, E. N. K. (1971). On the early schizocroal eyes of Ormathops (Trilobita, Zeliskellinae). Mémoires du Bureau de Recherches Géologiques et Minières 73, 51–63.
20. Clarkson, E. N. K. (1973). Morphology and evolution of the eye in Upper Cambrian Olenidae (Trilobita). Palaeontology 16, 735–763.
21. Clarkson, E. N. K. (1973). The eyes of Asaphus raniceps Dalman (Trilobita). Palaeontology 16, 425–444.
22. Clarkson, E. N. K. (1975). The evolution of the eye in trilobites. Fossils and Strata 4, 7–31.
23. Clarkson, E. N. K. & Levi-Setti, R. (1975). Trilobite eyes and the optics of Des Cartes and Huygens. Nature 254, 663–667.
24. Clarkson, E. N. K. (1979). The visual system of trilobites. Palaeontology 22, 1–22.
25. Clarkson, E. N. K. (1983). Trilobieten-ogen [Trilobite eyes]. Gea 16, 49–54.
26. Clarkson, E. N. K., Levi-Setti, R. & Horváth, G. (2006). The eyes of trilobites; the oldest preserved visual system. Arthropod Structure & Development 35, 247–259.
27. Cowen, R. & Kelley, J. S. (1976). Stereoscopic vision within the schizochroal eye of trilobites. Nature 261, 130–131.
28. Crônier, C. & Clarkson, E. N. K. (2001). Variation of eye-lens distribution in a new late Devonian phacopid trilobite. Transactions of the Royal Society of Edinburgh: Earth Sciences 92, 103–113.
29. Crônier, C., Feist, R. & Auffray, J.-C. (2004). Variation in the eye of Acuticryphops (Phacopina, Trilobita) and its evolutionary significance: a biometric and morphometric approach. Paleobiology 30, 471–481.
30. Crônier, C., Budil, P., Fatka, O. & Laibl, L. (2015). Intraspecific bimodal variability in eye lenses of two Devonian trilobites. Paleobiology 41, 554–569.
31. Egri, Á. & Horváth, G. (2012). Possible optical functions of the central core in lenses of trilobite eyes: spherically corrected monofocality or bifocality. Journal of the Optical Society of America A 29, 1965–1976.
32. Fan, Q., Xu, W., Hu, X., Zhu, W., Yue, T., Zhang, C., Yan, F., Chen, L., Lezec, H. J., Lu, Y., Agrawal, A. & Xu, T. (2022). Trilobite-inspired neural nanophotonic light-field camera with extreme depth-of-field. Nature Communications 13, 2130.
33. Fatka, O., Budil, P. & Zicha, O. (2021). Exoskeletal and eye repair in Dalmanitina socialis (Trilobita): An example of blastemal regeneration in the Ordovician. International Journal of Paleopathology 34, 113–121.
34. Feist, R. (1995). Effect of paedomorphosis in eye reduction on patterns of evolution and extinction in trilobites. In: McNamara, K. J. (ed.) Evolutionary Change and Heterochrony. London: John Wiley and Sons, 225–244.
35. Feist, R. (1997). Evolution heterochronique sous contrainte extrinseque: la reduction de l’oeil chez les trilobites neodevoniens [Heterochronic evolution under extrinsic pressure: reduction of the eye in the neodevonian trilobites]. Geobios M.S. 21, 331.
36. Fordyce, D. & Cronin, T. W. (1989). Comparison of fossilized schizochroal compound eyes of phacopid trilobites with eyes of modern marine crustaceans and other arthropods. Journal of Crustacean Biology 9, 554–569.
37. Fordyce, D. & Cronin, T. W. (1993). Trilobite vision: a comparison of schizochroal and holochroal eyes with the compound eyes of modern arthropods. Paleobiology 19, 288–303.
38. Fortey, R. A. & Chatterton, B. D. E. (2003). A Devonian Trilobite with an Eyeshade. Science 301, 1689.
39. Freitag, P. (2022). Augen-Rekonstruktion an einem Trilobiten der Gattung Ogmasaphus aus einem Ordovizium-Geschiebe des Plöner Kiesgrubengebiets. [Eye reconstruction of a trilobite of the genus Ogmasaphus from a Ordovician erratic from the Plön gravel pit area]. Der Steinkern 51, 62–66.
40. Gál, J., Horváth, G., Clarkson, E. N. K. & Haiman, O. (2000). Image formation by bifocal lenses in a trilobite eye? Vision Research 40, 843–853.
41. Gál, J., Horváth, G. & Clarkson, E. N. K. (2000). Reconstruction of the shape and optics of the lenses in the abathochroal‐eyed trilobite Neocobboldia chinlinica. Historical Biology 14, 193–204.
42. Greenberger, R. E. (2020). Investigating rare biomineralization structures in trilobites. Ph.D. thesis, University of Alabama, Tuscaloosa, AL, 58 pp.
43. Guo, Q., Chu, J.-k., Yu, H. & Zhang, R. (2025). Fabrication of artificial compound eyes with biplanar focal planes on a curved surface. ACS Applied Materials & Interfaces 17, 6588–6596.
44. Haack, S. C. (1987). The evolution and acuity of the schizochroal eye in trilobites. Evolutionary Theory 8, 69–72.
45. Han, N.-R. & Zhang, Y. (1985). Holochroal eyes of Cyclopyge. Geological Review 31, 390–395.
46. Han, N.-R. (2001). The eyes of Ordovician trilobite Telephina convexa Lu. Acta Palaeontologica Sinica 40, 399–408.
47. Harzsch, S., Vilpoux, K., Blackburn, D. C., Platchetzki, D., Brown, N. L., Melzer, R., Kempler, K. E. & Battelle, B. A. (2006). Evolution of arthropod visual systems: Development of the eyes and central visual pathways in the horseshoe crab Limulus polyphemus Linnaeus, 1758 (Chelicerata, Xiphosura). Developmental Dynamics 235, 2641–2655.
48. Holmes, J. D. (2023). Contrasting patterns of disparity suggest differing constraints on the evolution of trilobite cephalic structures during the Cambrian ‘explosion’. Palaeontology 66, e12647.
49. Horváth, G. (1989). Geometric optics of trilobite eyes: A theoretical study of the shape of the aspherical interface in the cornea of schizochroal eyes of phacopid trilobites. Mathematical Biosciences 96, 79–94.
50. Horváth, G. (1996). The lower lens unit in schizochroal trilobite eyes reduces reflectivity: on the possible optical function of the intralensar bowl. Historical Biology 12, 83–92.
51. Horváth, G., Clarkson, E. N. K. & Pix, W. (1997). Survey of modern counterparts of schizochroal trilobite eyes: structural and functional similarities and differences. Historical Biology 12, 229–263.
52. Hughes, N. C., Gunderson, G. O. & Weedon, M. J. (1997). Circumocular suture and visual surface of “Cedaria” woosteri (Trilobita, Late Cambrian) from the Eau Claire Formation, Wisconsin. Journal of Paleontology 71, 103–107.
53. Isberg, O. (1917). Ein regeneriertes trilobitenauge. Geologiska Föreningens i Stockholm Förhandlingar 39, 593–596.
54. Jell, P. A. (1975). The abathochroal eye of Pagetia, a new type of trilobite eye. Fossils and Strata 4, 33–43.
55. Klug, C., Schulz, H. & deBaets, K. (2009). Red Devonian trilobites with green eyes from Morocco and the silicification of the trilobite exoskeleton. Acta Palaeontologica Polonica 54, 117–123.
56. Kobluk, D. R. & Mapes, R. H. (1989). The fossil record, function, and possible origins of shell color patterns in Paleozoic marine invertebrates. Palaios 4, 63–85.
57. Lamont, A. (1967). Environmental significance of eye-reduction in trilobites and recent arthropods: Additional remarks. Marine Geology 5, 377–378.
58. Lee, M. R., Torney, C. & Owen, A. W. (2007). Magnesium-rich intralensar structures in schizochroal trilobite eyes. Palaeontology 50, 1031–1037.
59. Lee, M. R., Torney, C. & Owen, A. W. (2012). Biomineralisation in the Palaeozoic oceans: Evidence for simultaneous crystallisation of high and low magnesium calcite by phacopine trilobites. Chemical Geology 314-317, 33–44.
60. Lee, M. S. Y., Jago, J. B., García-Bellido, D. C., Edgecombe, G. D., Gehling, J. G. & Paterson, J. R. (2011). Modern optics in exceptionally preserved eyes of Early Cambrian arthropods from Australia. Nature 474, 631–634.
61. Lerosey-Aubril, R. & McNamara, K. J. (2008). The cephalic median organ of trilobites. Cuadernos del Museo Geominero, n°9 Advances in Trilobite Research, 229–235.
62. Lindgren, J., Nilsson, D. E., Sjövall, P., Jarenmark, M., Ito, S., Wakamatsu, K., Kear, B. P., Schultz, B. P., Sylvestersen, R. L., Madsen, H., LaFountain, J. R., Alwmark, C., Eriksson, M. E., Hall, S. A., Lindgren, P., Rodríguez-Meizoso, I. & Ahlberg, P. (2019). Fossil insect eyes shed light on trilobite optics and the arthropod pigment screen. Nature 573, 122–125.
63. Lindström, G. (1901). Researches on the visual organs of the trilobites. Kongliga Svenska Vetenskapsakademiens Handlingar 34, 1–87.
64. Lorenz, P. (1991). Die Variabilität und Ontogenie des Komplexauges von Phacops granulatus (Münster 1840) (Trilobita; Ober-Devon) [Variability and ontogeny of Phacops granulatus (Münster 1840) complexes (Trilobita, Upper Devonian)]. Geologica et Palaeontologica 25, 47–55.
65. Marcotte, B. M. (1999). Turbidity, arthropods and the evolution of perception: toward a new paradigm of marine phanerozoic diversity. Marine Ecology Progress Series 191, 267–288.
66. Miller, J. & Clarkson, E. N. K. (1980). The post-ecdysial development of the cuticle and the eye of the Devonian trilobite Phacops rana milleri Stewart 1927. Philosophical Transactions of the Royal Society of London B. Biological Sciences 288, 461–480.
67. Ono, S. (2011). Adaptive design of trilobite compound eyes: Integration between their optical features and mode of growth. Fossils 89, 1–2.
68. Packard Jr., A. S. (1880). The structure of the eye of trilobites. American Naturalist 14, 503–508.
69. Parker, A. R. (2011). On the origin of optics. Optics & Laser Technology 43, 323–329.
70. Parker, A. R., Schoenemann, B., Haug, J. T. & Waloszek, D. (2013). An unusual cornea from a well preserved (‘Orsten’) Cambrian compound eye. Paleontological Research 17, 251–261.
71. Rábano, I. (1984). Trilobites Ordovicicos del Macizo Hesperico Español: una vision bioestratigrafica. Cuadernos Geología Ibérica 9, 267–287.
72. Richter, R. (1922). Über einen fall äußerster rückbildung des schizochroalen trilobiten-auges. Centralblatt für Mineralogie, Geologie und Paläontologie 11, 344–352.
73. Rose, J. N. (1968). The eyes of Isotelus and Nileus. The Proceedings of the Iowa Academy of Science 74, 178–185.
74. Ruedemann, R. (1916). The presence of a median eye in trilobites. New York State Museum Bulletin 189, 127–143.
75. Ruedemann, R. (1916). The presence of a median eye in trilobites. Proceedings of the National Academy of Science of the United States of America 2, 234–237.
76. Schoenemann, B. (2007). Fossile augensysteme: bericht über zur zeit durchgeführte analysen fossiler augensysteme. Freiberger Forschungshefte C 524, 85–96.
77. Schoenemann, B. (2007). Trilobite eyes and a new type of neural superposition eye in an ancient system. Palaeontographica Abteilung A 281, 63–91.
78. Schoenemann, B., Clarkson, E. N. K., Ahlberg, P. & Álvarez, M. E. D. (2008). A Furongian polymerid planktonic trilobite. Cuadernos del Museo Geominero, n°9 Advances in Trilobite Research, 361–364.
79. Schoenemann, B. & Clarkson, E. N. K. (2008). Did the trabecula in phacopid lenses act as light-guides? Cuadernos del Museo Geominero, n°9 Advances in Trilobite Research, 351–354.
80. Schoenemann, B., Clarkson, E. N. K. & Franz, A. (2008). Sublensar capsules in phacopid eyes. Cuadernos del Museo Geominero, n°9 Advances in Trilobite Research, 355–359.
81. Schoenemann, B., Clarkson, E. N. K., Ahlberg, P. & Álvarez, M. E. D. (2010). A tiny eye indicating a planktonic trilobite. Palaeontology 53, 695–701.
82. Schoenemann, B. & Clarkson, E. N. K. (2011). Light guide lenses in trilobites? Earth and Environmental Science Transactions of the Royal Society of Edinburgh 102, 17–23.
83. Schoenemann, B. & Clarkson, E. N. K. (2011). The eyes of Bohemian trilobites. Geologické výzkumy na Moravĕ a ve Slezsku 18, 45–50.
84. Schoenemann, B. & Clarkson, E. N. K. (2012). Insights to eyes of phacopid trilobites. Scientific Papers. University of Latvia. Earth and Environmental Sciences 783, 72–75.
85. Schoenemann, B. & Clarkson, E. N. K. (2013). Discovery of some 400 million year-old sensory structures in the compound eyes of trilobites. Scientific Reports 3, 1429.
86. Schoenemann, B., Clarkson, E. N. K. & Ryck, U. (2014). Colour patterns in Devonian trilobites. Open Geology Journal 8, 113–117.
87. Schoenemann, B. & Clarkson, E. N. K. (2015). Eyes and vision in the coeval Furongian trilobites Sphaerophthalmus alatus (Boeck, 1938) and Ctenopyge (Mesoctenopyge) tumida Westergård, 1922, from Bornholm, Denmark. Palaeontology 58, 133–140.
88. Schoenemann, B., Clarkson, E. N. & Horváth, G. (2015). Why did the UV-A-induced photoluminescent blue-green glow in trilobite eyes and exoskeletons not cause problems for trilobites? PeerJ 3, e1492.
89. Schoenemann, B., Pärnaste, H. & Clarkson, E. N. K. (2017). Structure and function of a compound eye, more than half a billion years old. Proceedings of the National Academy of Science of the United States of America 114, 13489–13494.
90. Schoenemann, B., Clarkson, E. N. & Høyberget, M. (2017). Traces of an ancient immune system - how an injured arthropod survived 465 million years ago. Scientific Reports 7, 40330.
91. Schoenemann, B. & Clarkson, E. N. K. (2017). Vision in fossilised eyes. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 106, 209–220.
92. Schoenemann, B. (2018). Evolution of eye reduction and loss in trilobites and some related fossil arthropods. Emerging Science Journal 2, 272–286.
93. Schoenemann, B. & Clarkson, E. N. K. (2020). Insights into a 429-million-year-old compound eye. Scientific Reports 10, 12029.
94. Schoenemann, B., Clarkson, E. N. K., Bartels, C., Südkamp, W., Rössner, G. E. & Ryck, U. (2021). A 390 million-year-old hyper-compound eye in Devonian phacopid trilobites. Scientific Reports 11, 19505.
95. Schoenemann, B. (2021). An overview on trilobite eyes and their functioning. Arthropod Structure & Development 61, 101032.
96. Schoenemann, B. & Clarkson, E. N. K. (2021). Points of view in understanding trilobite eyes. Nature Communications 12, 2081.
97. Schoenemann, B. & Clarkson, E. N. K. (2023). The median eyes of trilobites. Scientific Reports 13, 3917.
98. Schoenemann, B., Hughes, N. C. & Myrow, P. M. (2024). Eye structure and function in Ameura (Trilobita) from the Upper Carboniferous Minturn Formation at Bond, Colorado, USA. Irish Journal of Earth Sciences 42, 299–307.
99. Schoenemann, B. (2025). Trilobite eyes and their evolution. Arthropoda 3, 1–24.
100. Scholtz, G., Staude, A. & Dunlop, J. A. (2019). Trilobite compound eyes with crystalline cones and rhabdoms show mandibulate affinities. Nature Communications 10, 2503.
101. Scholtz, G., Staude, A. & Dunlop, J. A. (2021). Reply to “Points of view in understanding trilobite eyes”. Nature Communications 12, 2084.
102. Shaw, F. C. & Ormiston, A. R. (1964). The eye socle of the trilobites. Journal of Paleontology 38, 1001–1002.
103. Spencer, W. K. (1903). The hypostomic eyes of trilobites. Geological Magazine 10, 489–492.
104. Stockton, W. L. & Cowen, R. (1976). Stereoscopic vision in one eye: Paleophysiology of the schizocroal eye of trilobites. Paleobiology 2, 304–315.
105. Strausfeld, N. J., Ma, X., Edgecombe, G. D., Fortey, R. A., Land, M. F., Liu, Y., Cong, P. & Hou, X. (2016). Arthropod eyes: The early Cambrian fossil record and divergent evolution of visual systems. Arthropod Structure & Development 45, 152–172.
106. Tanaka, G., Parker, A. R., Hasegawa, Y., Siveter, D. J., Yamamoto, R., Miyashita, K., Takahashi, Y., Ito, S., Wakamatsu, K., Mukuda, T., Matsuura, M., Tomikawa, K., Furutani, M., Suzuki, K. & Maeda, H. (2014). Mineralized rods and cones suggest colour vision in a 300 Myr-old fossil fish. Nature Communications 5, 5920.
107. Tanaka, G., Schoenemann, B., El Hariri, K., Ono, T., Clarkson, E. & Maeda, H. (2015). Vision in a Middle Ordovician trilobite eye. Palaeogeography, Palaeoclimatology, Palaeoecology 433, 129–139.
108. Thomas, A. T. (1998). Variation in the eyes of the Silurian trilobites Eophacops and Acaste and its significance. Palaeontology 41, 897–911.
109. Thomas, A. T. (2005). Developmental palaeobiology of trilobite eyes and its evolutionary significance. Earth-Science Reviews 71, 77–93.
110. Torney, C., Lee, M. R. & Owen, A. W. (2008). An electron backscatter diffraction study of Geesops: a broader view of trilobite vision? Cuadernos del Museo Geominero, n°9 Advances in Trilobite Research, 389–394.
111. Torney, C. (2011). Mineral eyes: lessons from the natural world. Ph.D. thesis, University of Glasgow, Glasgow, 1 pp.
112. Torney, C., Lee, M. R. & Owen, A. W. (2014). Microstructure and growth of the lenses of schizochroal trilobite eyes. Palaeontology 57, 783–799.
113. Towe, K. (1973). Trilobite eyes: Calcified lenses in vivo. Science 179, 1007–1009.
114. Walcott, C. D. (1883). Injury sustained by the eye of a trilobite at the time of the moulting of the shell. American Journal of Science 26, 302.
115. Yang, J. (2004). [Darwin’s Puzzle and the Trilobite’s Compound Eyes]. Fossil (化石) 2004, 33–36.
116. Zhang, X.-G. & Clarkson, E. N. K. (1990). The eyes of Lower Cambrian eodiscid trilobites. Palaeontology 33, 911–932.
117. Zhao, F., Bottjer, D. J., Hu, S., Yin, Z. & Zhu, M. (2013). Complexity and diversity of eyes in early Cambrian ecosystems. Scientific Reports 3, 2751.
118. Zong, R.-W. (2023). Variation in eye lenses of two new Late Devonian phacopid trilobites from western Junggar, NW China. Journal of Paleontology 97, 891–905.
119. Zydorowicz, T. (1993). Geometria holochroiciznego oka trylobita a problemy uniformitaryzmu w geologii [Geometry of the trilobite’s holochroic eye and the issue of uniformitarism in geology]. Przegląd Geologiczny 41, 432–434.