Конус — это геометрическое тело, которое образовано совокупностью всех лучей, исходящих из точки и пересекающих любую плоскую поверхность. В месте пересечения образуется основание конуса.
Определение. Вершина конуса - это точка (K), из которой исходят лучи.
Определение. Основание конуса - это плоскость, образованная в результате пересечения плоской поверхности и всех лучей, исходящих из вершины конуса. У конуса могут быть такие основы, как круг, эллипс, гипербола и парабола.
Определение. Образующей конуса (L) называется любой отрезок, который соединяет вершину конуса с границей основания конуса. Образующая есть отрезок луча, выходящего из вершины конуса.
Формула. Длина образующей (L) прямого кругового конуса через радиус R и высоту H (через теорему Пифагора):
L2 = R2 + H2
Определение. Направляющая конуса - это кривая, которая описывает контур основания конуса.
Определение. Боковая поверхность конуса - это совокупность всех образующих конуса. То есть, поверхность, которая образуется движением образующей по направляющей конуса.
Определение. Поверхность конуса состоит из боковой поверхности и основания конуса.
Определение. Высота конуса (H) - это отрезок, который выходит из вершины конуса и перпендикулярный к его основанию.
Определение. Ось конуса (a) - это прямая, проходящая через вершину конуса и центр основания конуса.
Определение. Конусность (С) конуса - это отношение диаметра основания конуса к его высоте. В случае усеченного конуса - это отношение разности диаметров поперечных сечений D и d усеченного конуса к расстоянию между ними:
C = D/H
и
C=(D-d)/h
где C - конусность, D - диаметр основания, d - диаметр меньшего основания и h - расстояние между основаниями.
Конусность характеризует остроту конуса, то есть, угол наклона образующей к основанию конуса. Чем больше конусность, тем острее угол наклона. угол конуса α будет:
α = 2arctg(R/H)
где R - радиус основы, а H - высота конуса.
Определение. Осевое сечение конуса - это сечение конуса плоскостью, проходящей через ось конуса. Такое сечение образует равнобедренный треугольник, у которого стороны образованы образующими, а основание треугольника - это диаметр основания конуса.
Определение. Касательная плоскость к конусу - это плоскость, проходящая через образующую конуса и перпендикулярна к осевому сечению конуса.
Определение. Конус, что опирается на круг, эллипс, гиперболу или параболу называется соответственно круговым, эллиптическим, гиперболическим или параболическим конусом (последние два имеют бесконечный объем).
Определение. Прямой конус - это конус у которого ось перпендикулярна основе. У такого конуса ось совпадает с высотой, а все образующие равны между собой.