——學歷——
美國德州大學奧斯汀分校物理博士
——現職——
國立清華大學物理系 講座教授
國家量子系統推動小組 召集人
國立陽明交通大學 電子物理系 合聘
——榮譽——
中華民國物理學會會士
美國物理學會會士
第59屆教育部學術獎(數學及自然科學組)
第23屆國家講座教授
——研究專長——
著重於低維次(low dimensional)原子級(atomic-scale)至奈米級(nanometer-scale)凝態材料系統與半導體薄膜磊晶,研究技巧包括氮化銦(InN)、氮化鎵(GaN)、氮化鋁(AlN)半導體薄膜及奈米材料的分子束磊晶成長(molecular-beam epitaxy growth of III-nitride semiconductor films and nanostructures)及相關材料的前瞻性光譜研究、超高真空掃描探針顯微術(ultra-high-vacuum scanning probe microscopy)、原子力顯微術(atomic force microscopy)、靜電力顯微術(electrostatic force microscopy) 、奈米微影術(nanolithography)、奈米材料的操控(nanomanipulation)、掃描穿隧能譜(scanning tunneling spectroscopy)及光電材料的同步輻射光電子能譜(synchrotron-radiation photoelectron spectroscopy)研究等。
2022年,台灣第一部量子科幻影集《Q18》正式開拍,這是由張慶瑞教授與黃琮暐教授擔任科學指導,由鴻海科技集團、金禾創意與文策院共同投資的台灣第一部量子科幻影集。全劇預計共十集,每集一小時,將於2023年底於國際影音傳流平台首播。本劇長達兩年時間的編劇、一年半的籌資與籌備,又歷經數波疫情干擾,以及2022通膨的考驗,終於在2022年七月順利開拍,並於十月中旬殺青。全劇囊括台灣重要一線演員,有:炎亞綸、金士傑、天心、宥勝、李銘順、李千那、石知田、劉修甫、趙逸嵐、田士廣、盧以恩…等等,透過超強卡司的演出,以及引人入勝的劇情,量子力學的世界觀將以最通俗的方式,介紹給普羅大眾眼前。
台灣導演、編劇,出生於台灣基隆。國立政治大學哲學系畢業。
透過說故事,探索人生與智慧、尋求世界的真相。
2023最新作品:量子科幻影集《Q18》
2022 / 《流麻溝十五號》
2021 / 《愛.殺》台北電影節最佳女主角獎
2007 / 《刺青》柏林國際影展-泰迪熊最佳影片獎、羅馬國際電影節-亞洲最佳影片獎
2005 / 《漂浪青春》 西班牙國際影展最佳影片獎
2004 / 《豔光四射歌舞團》 獲三項金馬獎
2000 / 《流離島影》總策劃,山形國際影展等十餘個影展
2001 / 《私角落》台北電影節最佳紀錄片
2002 / 《極端寶島》台灣國際紀錄片雙年展國際評審團特別獎
2016 / 《黑暗視界》南方影展最佳紀錄片、INPUT國際公共電視節
2016 / 《失去你的那一天》入圍四項金鐘獎
2018 / 《阿青,回家了》金穗獎四十週年閉幕片
Progress towards the realization of quantum computers requires persistent advances in their constituent building blocks—qubits. Novel qubit platforms that simultaneously embody long coherence, fast operation and large scalability offer compelling advantages in the construction of quantum computers and many other quantum information systems. Electrons, ubiquitous elementary particles of non-zero charge, spin and mass, have commonly been perceived as paradigmatic local quantum information carriers. Despite superior controllability and configurability, their practical performance as qubits through either motional or spin states depends critically on their material environment. In this talk, I will present our experimental realization of a new qubit platform based on isolated single electrons trapped on an ultraclean solid neon surface in vacuum. By integrating an electron trap in a circuit quantum electrodynamics architecture, we achieve strong coupling between the motional states of a single electron and a single microwave photon in an on-chip superconducting resonator [1]. Qubit gate operations and dispersive readout are successfully implemented. Our latest measurements show that both the relaxation time T1 and coherence time T2 have reached 100-microsecond scale [2]. The observed single-shot readout fidelity, without using a quantum-limited amplifier, is already 94.4%. Simultaneous strong coupling of two qubits with the microwave resonator is also demonstrated, as a first step toward two-qubit entangling gates for universal quantum computing. These results manifest that the electron-on-solid-neon (eNe) charge qubits have outperformed all the existing charge qubits to date and rivaled the state-of-the-art superconducting transmon qubits.
[1] X. Zhou … and D. Jin, “Single electrons on solid neon as a solid-state qubit platform”, Nature 605, 46–50 (2022).
[2] X. Zhou … and D. Jin, “Electron charge qubits on solid neon with 0.1 millisecond coherence time”, manuscript submitted (2022).
Dafei Jin is an Associate Professor of Physics at University of Notre Dame and a jointly appointed Quantum Scientist at Argonne National Laboratory, USA. He received his Ph.D. in low-temperature condensed matter physics from Brown University and performed postdoctoral research in quantum nano electronics and optics at Massachusetts Institute of Technology (MIT) and University of California (UC) Berkeley. He is the lead of the Quantum Matter and Devices Labs at Notre Dame and Argonne. His research team works in broad areas across quantum matter, quantum devices, topological materials, and nonequilibrium systems. At present, his main focus is on the development of a novel quantum information architecture based on quantum solids and superconducting circuits. He has over 80 scientific publications in high-impact journals, including Nature, Science, Nature sub-journals, PNAS, Physical Review Letters, etc. His research was funded by grants and awards from the National Science Foundation, Department of Energy, and the Julian Schwinger Foundation.