*Note that not necessarily all information presented is referenced in the sources listed. Established or well-known facts, for instance, may not be mentioned in the sources.
What does the Future hold?:
>AI and misinformation are supercharging the risk of nuclear war. (2025). PubMed. https://doi.org/10.1038/d41586-025-02271-w
>Council of the New Zealand Ecological Society. (2005). THE ENVIRONMENTAL CONSEQUENCES TO NEW ZEALAND OF NUCLEAR WARFARE IN THE NORTHERN HEMISPHERE. New Zealand Journal of Ecology. https://newzealandecology.org/nzje/1658/pdf
>Adami, A. (2021, April 19). Food security and Brazil’s role in the global food supply. Center for Advanced Studies on Applied Economics. https://www.cepea.org.br/en/opinion/food-security-and-brazil-s-role-in-the-global-food-supply.aspx
>Khursheed, A. (2025, March 4). The most Food Self-Sufficient Countries & What we can learn from them. Youth in Food Systems - Engaging Youth in Food Exploration. https://seeds.ca/schoolfoodgardens/the-most-food-self-sufficient-countries-what-we-can-learn-from-them/
>NZ Fruit & Vegetable Growers Help Lead the Way in Global Food Security. (2025, July 8). United Fresh New Zealand Incorporated. https://unitedfresh.co.nz/news-events/united-fresh-news-feed/nz-fruit-vegetable-growers-help-lead-the-way-in-global-food-security
>NASA Planetary Defense Strategy & Action Plan Working Group. (2023). NASA PLANETARY DEFENSE STRATEGY AND ACTION PLAN. In www.nasa.gov. https://www.nasa.gov/wp-content/uploads/2023/06/nasa_-_planetary_defense_strategy_-_final-508.pdf
>Lubin, P., & Cohen, A. N. (2022). Asteroid interception and disruption for terminal planetary defense. Advances in Space Research, 71(3), 1827–1839. https://doi.org/10.1016/j.asr.2022.10.018
>Ocean Portal Team. (n.d.). Ocean acidification. Smithsonian Ocean. https://ocean.si.edu/ocean-life/invertebrates/ocean-acidification
>Doubleday, Z. A., Prowse, T. A., Arkhipkin, A., Pierce, G. J., Semmens, J., Steer, M., Leporati, S. C., Lourenço, S., Quetglas, A., Sauer, W., & Gillanders, B. M. (2016). Global proliferation of cephalopods. Current Biology, 26(10), R406–R407. https://doi.org/10.1016/j.cub.2016.04.002
>Lynam, C. P., Lilley, M. K. S., Bastian, T., Doyle, T. K., Beggs, S. E., & Hays, G. C. (2010). Have jellyfish in the Irish Sea benefited from climate change and overfishing? Global Change Biology, 17(2), 767–782. https://doi.org/10.1111/j.1365-2486.2010.02352.x
>Avise, J. C., Hubbell, S. P., & Ayala, F. J. (2008). Are We in the Midst of the Sixth Mass Extinction? A View from the World of Amphibians. In The Light of Evolution - NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK214887/
>24.3A: Chytridiomycota- The Chytrids. (n.d.). Biology LibreTexts. https://bio.libretexts.org/Bookshelves/Introductory_and_General_Biology/General_Biology_(Boundless)/24%3A_Fungi/24.03%3A_Classifications_of_Fungi/24.3A%3A_Chytridiomycota-_The_Chytrids
>Jenkinson, T. S. (2022). Pathogenesis: How a killer fungus targets its host. Current Biology, 32(12), R583–R585. https://doi.org/10.1016/j.cub.2022.05.004
>Rosenblum, E. B., Voyles, J., Poorten, T. J., & Stajich, J. E. (2010). The Deadly Chytrid Fungus: A story of an emerging pathogen. PLoS Pathogens, 6(1), e1000550. https://doi.org/10.1371/journal.ppat.1000550
>Hilgris, R. (n.d.). Rhinella marina Cane Toad. Animal Diversity Web. https://animaldiversity.org/accounts/Rhinella_marina/
>Brannelly, L., Martin, G., Llewelyn, J., Skerratt, L., & Berger, L. (2018). Age- and size-dependent resistance to chytridiomycosis in the invasive cane toad Rhinella marina. Diseases of Aquatic Organisms, 131(2), 107–120. https://doi.org/10.3354/dao03278
>Plumlee, K. H. (2004). Biotoxins. In Elsevier eBooks (pp. 98–116). https://doi.org/10.1016/b0-32-301125-x/50021-2
>Armitage, D. (n.d.). Rattus norvegicus (brown rat). Animal Diversity Web. https://animaldiversity.org/accounts/Rattus_norvegicus/
>Antani, K., & Burgeson, A. (n.d.). Blattella germanica (German cockroach). Animal Diversity Web. https://animaldiversity.org/accounts/Blattella_germanica/
>Roof, J. (n.d.). Columba livia common pigeon. Animal Diversity Web. https://animaldiversity.org/accounts/Columba_livia/
>The Biology and Ecology of Rice (Oryza sativa L.) in Australia. (2005). In Australian Government Department of Health Office of the Gene Technology Regulator. https://www.ogtr.gov.au/sites/default/files/files/2021-07/the_biology_of_rice.pdf
>Yamauchi, T., Yoshioka, M., Fukazawa, A., Mori, H., Nishizawa, N. K., Tsutsumi, N., Yoshioka, H., & Nakazono, M. (2017). An NADPH Oxidase RBOH Functions in Rice Roots during Lysigenous Aerenchyma Formation under Oxygen-Deficient Conditions. The Plant Cell, 29(4), 775–790. https://doi.org/10.1105/tpc.16.00976
>Upadhyay, R. K. (2016). How rice (Oryza sativa L.), a semi-aquatic plant adapt to natural flood or submerged condition? A physiological perspective. Sains Malaysiana. https://works.bepress.com/rk_upadhyay/4/
>Canadian Food Inspection Agency. (n.d.). The biology of Triticum aestivum L. (wheat). inspection.canada.ca. https://inspection.canada.ca/en/plant-varieties/plants-novel-traits/applicants/directive-94-08/biology-documents/triticum-aestivum
>Canadian Food Inspection Agency. (n.d.). The biology of Zea mays L. (maize). inspection.canada.ca. https://inspection.canada.ca/en/plant-varieties/plants-novel-traits/applicants/directive-94-08/biology-documents/zea-mays-maize
>Trtikova, M., Lohn, A., Binimelis, R., Chapela, I., Oehen, B., Zemp, N., Widmer, A., & Hilbeck, A. (2017). Teosinte in Europe – Searching for the Origin of a Novel Weed. Scientific Reports, 7(1), 1-7. https://doi.org/10.1038/s41598-017-01478-w
>Collins, S. (2025, March 18). Conservation efforts are bringing species back from the brink. University of Cambridge. https://www.cam.ac.uk/stories/conservation-success-stories
>Simkins, A. T., Sutherland, W. J., Dicks, L. V., Hilton-Taylor, C., Grace, M. K., Butchart, S. H. M., A, R., Senior, & Petrovan, S. O. (2025). Past conservation efforts reveal which actions lead to positive outcomes for species. PLoS Biology, 23(3), e3003051. https://doi.org/10.1371/journal.pbio.3003051
>Seay, K. (n.d.). Alligator mississippiensis (Alligator, Gator, American alligator, Florida alligator, Mississippi alligator, Louisiana alligator.). Animal Diversity Web. https://animaldiversity.org/accounts/Alligator_mississippiensis/
>Cook, A., & Clarkson, H. (2023, December 19). Why We almost said “See you later” to the American alligator. Defenders of Wildlife. https://defenders.org/blog/2023/12/why-we-almost-said-see-you-later-american-alligator
>Evansen, M. (2023, January 10). Saving the Bald Eagle – a conservation success story. Defenders of Wildlife. https://defenders.org/blog/2023/01/saving-bald-eagle-conservation-success-story
>Zerbini, A. N., Adams, G., Best, J., Clapham, P. J., Jackson, J. A., & Punt, A. E. (2019). Assessing the recovery of an Antarctic predator from historical exploitation. Royal Society Open Science, 6(10), 190368. https://doi.org/10.1098/rsos.190368
>Flores, H., Atkinson, A., Kawaguchi, S., Krafft, B., Milinevsky, G., Nicol, S., Reiss, C., Tarling, G., Werner, R., Rebolledo, E. B., Cirelli, V., Cuzin-Roudy, J., Fielding, S., Van Franeker, J., Groeneveld, J., Haraldsson, M., Lombana, A., Marschoff, E., Meyer, B., . . . Werner, T. (2012). Impact of climate change on Antarctic krill. Marine Ecology Progress Series, 458, 1–19. https://doi.org/10.3354/meps09831
>Sea level rise map and coastal flood tool — US and global. (n.d.-b). https://coastal.climatecentral.org/
>Van Alphen, J. (2015). The Delta Programme and updated flood risk management policies in the Netherlands. Journal of Flood Risk Management, 9(4), 310–319. https://doi.org/10.1111/jfr3.12183
>Dešman, K. (n.d.). MOSE flood barriers. BIG SEE. https://bigsee.eu/mose-flood-barriers/
>Salvaguardia Venezia – Sistema MOSE. (2008, September 29). European Investment Bank. https://www.eib.org/en/projects/pipelines/all/20080191
>Muggah, R. (2019, June 28). How China’s sponge cities are preparing for sea-level rise. World Economic Forum. https://www.weforum.org/stories/2019/06/how-china-s-sponge-cities-are-preparing-for-sea-level-rise/
>Cheng, H., & Chen, J. (2017). Adapting cities to sea level rise: A perspective from Chinese deltas. Advances in Climate Change Research, 8(2), 130–136. https://doi.org/10.1016/j.accre.2017.05.006
>Xia, J., Zhang, Y., Xiong, L., He, S., Wang, L., & Yu, Z. (2017). Opportunities and challenges of the Sponge City construction related to urban water issues in China. Science China Earth Sciences, 60(4), 652–658. https://doi.org/10.1007/s11430-016-0111-8
>Østergaard, P. A., Duic, N., Noorollahi, Y., & Kalogirou, S. (2023). Advances in renewable energy for sustainable development. Renewable Energy, 219, 119377. https://doi.org/10.1016/j.renene.2023.119377
>Dinneen, J. (2025, February 27). We now know how much emissions have delayed the next glacial period. New Scientist. https://www.newscientist.com/article/2470262-we-now-know-how-much-emissions-have-delayed-the-next-glacial-period/
>Barker, S., Lisiecki, L. E., Knorr, G., Nuber, S., & Tzedakis, P. C. (2025). Distinct roles for precession, obliquity, and eccentricity in Pleistocene 100-kyr glacial cycles. Science. https://doi.org/adp3491
>Paudel, S., & States, S. L. (2023). Urban green spaces and sustainability: Exploring the ecosystem services and disservices of grassy lawns versus floral meadows. Urban Forestry & Urban Greening, 84, 127932. https://doi.org/10.1016/j.ufug.2023.127932
>Tuomisto, H. L. (2019). Vertical farming and cultured meat: immature technologies for urgent problems. One Earth, 1(3), 275–277. https://doi.org/10.1016/j.oneear.2019.10.024
>Deforestation in the Amazon Rainforest: causes, effects, solutions. (2023, May 12). Green . Earth. https://www.green.earth/blog/deforestation-in-the-amazon-rainforest-causes-effects-solutions
>A brief history of space tourism. (2022, June 16). Zero-G. https://www.gozerog.com/research-articles/a-brief-history-of-space-tourism
>Yarlagadda, S. (2022, April 8). Economics of the Stars: The future of asteroid mining and the global economy. Harvard International Review. https://hir.harvard.edu/economics-of-the-stars/
>Spudis, P. (2006). Mining the moon. American Scientist. https://www.americanscientist.org/article/mining-the-moon
>Sohn, R. (2023, October 12). Metal asteroid Psyche has a ridiculously high 'value.' But what does that even mean? Space. https://www.space.com/psyche-metal-asteroid-composition
>Cannon, K. M., Gialich, M., & Acain, J. (2022). Precious and structural metals on asteroids. Planetary and Space Science, 225, 105608. https://doi.org/10.1016/j.pss.2022.105608
>Wattles, J. (2025, September 12). Two billionaires have very different — and equally wild — visions of a future in space. Is either possible? CNN. https://edition.cnn.com/2025/09/12/science/elon-musk-jeff-bezos-oneill-mars-colony
>Grandl, W. (2017). Human life in the Solar System. REACH, 5, 9–21. https://doi.org/10.1016/j.reach.2017.03.001
>Moseman, E. A. (2022). Pro-inflammatory cytokine responses to Naegleria fowleri infection. Frontiers in Tropical Diseases, 3, 1082334. https://doi.org/10.3389/fitd.2022.1082334
>John, D. T., Cole, T. B., & Marciano-Cabral, F. M. (1984). Sucker-like structures on the pathogenic amoeba Naegleria fowleri. Applied and Environmental Microbiology, 47(1), 12–14. https://doi.org/10.1128/aem.47.1.12-14.1984
>Savage, N. (2025). Eye problems cloud NASA’s vision of Mars. https://doi.org/10.1038/d41586-025-00654-7
>Tomaswick, A. (2025, June 7). Terraforming Mars will require hitting it with mulitple asteroids. Universe Today. https://www.universetoday.com/articles/terraforming-mars-will-require-hitting-it-with-mulitple-asteroids
>Czechowski, L. (2025). Energy problems of terraforming Mars. LPSC, 56. https://www.hou.usra.edu/meetings/lpsc2025/pdf/1858.pdf
>Robson, D. (2022, February 24). How East and West think in profoundly different ways. BBC. https://www.bbc.com/future/article/20170118-how-east-and-west-think-in-profoundly-different-ways
>Mars: Facts - NASA Science. (n.d.). NASA Science. https://science.nasa.gov/mars/facts/
>Dry Ice on Mars - NASA Science. (2011, April 6). NASA Science. https://science.nasa.gov/resource/dry-ice-on-mars/
>Hurowitz, J. A., Tice, M. M., Allwood, A. C., Cable, M. L., Hand, K. P., Murphy, A. E., Uckert, K., Bell, J. F., Bosak, T., Broz, A. P., Clavé, E., Cousin, A., Davidoff, S., Dehouck, E., Farley, K. A., Gupta, S., Hamran, S., Hickman-Lewis, K., Johnson, J. R., . . . Wolf, Z. U. (2025b). Redox-driven mineral and organic associations in Jezero Crater, Mars. Nature, 645(8080), 332–340. https://doi.org/10.1038/s41586-025-09413-0
>Khuller, A. R., Warren, S. G., Christensen, P. R., & Clow, G. D. (2024). Potential for photosynthesis on Mars within snow and ice. Communications Earth & Environment, 5(1). https://doi.org/10.1038/s43247-024-01730-y
>Butturini, A., Benaiges-Fernandez, R., Fors, O., & Garcia-Castellanos, D. (2024). Potential habitability of present-day Mars subsurface for terrestrial-like methanogens. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2411.15064
>Buan, N. R. (2018). Methanogens: pushing the boundaries of biology. Emerging Topics in Life Sciences, 2(4), 629–646. https://doi.org/10.1042/etls20180031
>Jupiter Facts. (n.d.). NASA Science. https://science.nasa.gov/jupiter/jupiter-facts/
>Hille, K. B. (2015, August 4). Jupiter’s Great Red Spot: a swirling mystery - NASA. NASA. https://www.nasa.gov/centers-and-facilities/goddard/jupiters-great-red-spot-a-swirling-mystery/
>Sandnes, T. D., Eke, V. R., Kegerreis, J. A., Massey, R. J., & Teodoro, L. F. A. (2025). No dilute core produced in simulations of giant impacts on to Jupiter. Monthly Notices of the Royal Astronomical Society, 542(2), 947–959. https://doi.org/10.1093/mnras/staf1105
>O’Donoghue, J., Moore, L., Bhakyapaibul, T., Johnson, R., Melin, H., & Stallard, T. (2022). A planetary-scale heat wave in Jupiter’s mid-latitude upper atmosphere. Europlanet Science Congress. https://doi.org/10.5194/epsc2022-373
>IO: Facts - NASA Science. (n.d.). NASA Science. https://science.nasa.gov/jupiter/jupiter-moons/io/facts/
>Europa: Facts - NASA Science. (n.d.). NASA Science. https://science.nasa.gov/jupiter/jupiter-moons/europa/europa-facts/
>Why Europa? Ingredients for life. (n.d.). NASA Science. https://science.nasa.gov/mission/europa-clipper/why-europa-ingredients-for-life/
>Kihoulou, M., Choblet, G., Tobie, G., Kalousová, K., & Čadek, O. (2025). Subduction-like process in Europa’s ice shell triggered by enhanced eccentricity periods. Science Advances, 11(23). https://doi.org/10.1126/sciadv.adq8719
>Moons In Depth. (n.d.). NASA Solar System Exploration. https://solarsystem.nasa.gov/moons/jupiter-moons/ganymede/in-depth.amp
>Journaux, B., Kalousová, K., Sotin, C., Tobie, G., Vance, S., Saur, J., Bollengier, O., Noack, L., Rückriemen-Bez, T., Van Hoolst, T., Soderlund, K. M., & Brown, J. M. (2020). Large Ocean Worlds with High-Pressure Ices. Space Science Reviews, 216(1). https://doi.org/10.1007/s11214-019-0633-7
>Saturn: Facts - NASA Science. (n.d.). NASA Science. https://science.nasa.gov/saturn/facts/
>Enceladus - NASA Science. (n.d.). NASA Science. https://science.nasa.gov/saturn/moons/enceladus/
>Peter, J. S., Nordheim, T. A., & Hand, K. P. (2023). Detection of HCN and diverse redox chemistry in the plume of Enceladus. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2301.05259
>Titan Facts. (n.d.). NASA Science. https://science.nasa.gov/saturn/moons/titan/facts/
>Miller, K. E., Glein, C. R., & Waite, J. H. (2019). Contributions from Accreted Organics to Titan’s Atmosphere: New Insights from Cometary and Chondritic Data. The Astrophysical Journal, 871(1), 59. https://doi.org/10.3847/1538-4357/aaf561
>Gubu, A., Zhang, X., Lu, A., Zhang, B., Ma, Y., & Zhang, G. (2023). Nucleic acid amphiphiles: Synthesis, properties, and applications. Molecular Therapy — Nucleic Acids, 33, 144–163. https://doi.org/10.1016/j.omtn.2023.05.022
>Schreiner, P. R. (2020). Quantum mechanical tunneling is essential to understanding chemical reactivity. Trends in Chemistry, 2(11), 980–989. https://doi.org/10.1016/j.trechm.2020.08.006
>Our nearest celestial neighbor? An exotic 3-Star system - NASA Science. (n.d.). NASA Science. https://science.nasa.gov/exoplanets/other-stars-other-worlds/our-nearest-celestial-neighbor-an-exotic-3-star-system/
>Tillman, N. T. (2019, June 6). Red Dwarfs: The Most Common and Longest-Lived Stars. Space. https://www.space.com/23772-red-dwarf-stars.html
>Lea, R. (2023, March 20). Bad news for alien life? Even calm red dwarf stars rage more violently than the sun. Space. https://www.space.com/red-dwarfs-activity-bad-news-alien-life
>Mignon, L., Meunier, N., Delfosse, X., Bonfils, X., Santos, N. C., Forveille, T., Gaisné, G., Astudillo-Defru, N., Lovis, C., & Udry, S. (2023). Characterisation of stellar activity of M dwarfs. I. Long-timescale variability in a large sample and detection of new cycles. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2303.03998
>Gunell, H., Maggiolo, R., Nilsson, H., Wieser, G. S., Slapak, R., Lindkvist, J., Hamrin, M., & De Keyser, J. (2018). Why an intrinsic magnetic field does not protect a planet against atmospheric escape. Astronomy and Astrophysics, 614, L3. https://doi.org/10.1051/0004-6361/201832934
>Herath, M., Gunesekera, S., & Jayaratne, C. (2020). Characterizing the possible interior structures of the nearby Exoplanets Proxima Centauri b and Ross-128 b. Monthly Notices of the Royal Astronomical Society, 500(1), 333–354. https://doi.org/10.1093/mnras/staa3110
>Foley, B. J., Bercovici, D., & Landuyt, W. (2012). The conditions for plate tectonics on super-Earths: Inferences from convection models with damage. Earth and Planetary Science Letters, 331–332, 281–290. https://doi.org/10.1016/j.epsl.2012.03.028
>Hu, Y., & Yang, J. (2013). Role of ocean heat transport in climates of tidally locked exoplanets around M dwarf stars. Proceedings of the National Academy of Sciences, 111(2), 629–634. https://doi.org/10.1073/pnas.1315215111
>Cowan, N. B., & Abbot, D. S. (2014). WATER CYCLING BETWEEN OCEAN AND MANTLE: SUPER-EARTHS NEED NOT BE WATERWORLDS. The Astrophysical Journal, 781(1), 27. https://doi.org/10.1088/0004-637x/781/1/27
>TRAPPIST-1 is Older Than Our Solar System - NASA Science. (2017, August 11). NASA Science. https://science.nasa.gov/universe/exoplanets/trappist-1-is-older-than-our-solar-system/
>Burgasser, A. J., & Mamajek, E. E. (2017). On the Age of the TRAPPIST-1 System. The Astrophysical Journal, 845(2), 110. https://doi.org/10.3847/1538-4357/aa7fea
>The TRAPPIST-1 habitable Zone - NASA Science. (n.d.). NASA Science. https://science.nasa.gov/asset/hubble/the-trappist-1-habitable-zone/
>Cooper, K. (2024, August 23). Why the 7 worlds of TRAPPIST-1 waltz in peculiar patterns. Space. https://www.space.com/trappist-1-history-orbital-resonance
>Pichierri, G., Morbidelli, A., Batygin, K., & Brasser, R. (2024). The formation of the TRAPPIST-1 system in two steps during the recession of the disk inner edge. Nature Astronomy, 8(11), 1408–1415. https://doi.org/10.1038/s41550-024-02342-4
>Agol, E., Dorn, C., Grimm, S. L., Turbet, M., Ducrot, E., Delrez, L., Gillon, M., Demory, B., Burdanov, A., Barkaoui, K., Benkhaldoun, Z., Bolmont, E., Burgasser, A., Carey, S., De Wit, J., Fabrycky, D., Foreman-Mackey, D., Haldemann, J., Hernandez, D. M., . . . Van Grootel, V. (2021). Refining the transit-timing and photometric analysis of TRAPPIST-1: masses, radii, densities, dynamics, and ephemerides. The Planetary Science Journal, 2(1), 1. https://doi.org/10.3847/psj/abd022
>Ducrot, E., Lagage, P., Min, M., Gillon, M., Bell, T. J., Tremblin, P., Greene, T., Dyrek, A., Bouwman, J., Waters, R., Güdel, M., Henning, T., Vandenbussche, B., Absil, O., Barrado, D., Boccaletti, A., Coulais, A., Decin, L., Edwards, B., . . . Wright, G. (2024). Combined analysis of the 12.8 and 15 μm JWST/MIRI eclipse observations of TRAPPIST-1 b. Nature Astronomy. https://doi.org/10.1038/s41550-024-02428-z
>Downes, H. (2020). Ultramafic Rocks. In Elsevier eBooks (pp. 69–75). https://doi.org/10.1016/b978-0-12-409548-9.12478-9
>Radica, M., Piaulet-Ghorayeb, C., Taylor, J., Coulombe, L., Albert, L., Artigau, É., Benneke, B., Cowan, N. B., Doyon, R., Lafrenière, D., L’Heureux, A., & Lim, O. (2024). Promise and Peril: Stellar Contamination and Strict Limits on the Atmosphere Composition of TRAPPIST-1c from JWST NIRISS Transmission Spectra. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2409.19333
>Piaulet-Ghorayeb, C., Benneke, B., Turbet, M., Moore, K., Roy, P., Lim, O., Doyon, R., Fauchez, T. J., Albert, L., Radica, M., Coulombe, L., Lafrenière, D., Cowan, N. B., Belzile, D., Musfirat, K., Kaur, M., L’Heureux, A., Johnstone, D., MacDonald, R. J., . . . Turner, J. D. (2025). Strict Limits on Potential Secondary Atmospheres on the Temperate Rocky Exo-Earth TRAPPIST-1 d. The Astrophysical Journal, 989(2), 181. https://doi.org/10.3847/1538-4357/adf207
>Glidden, A., Ranjan, S., Seager, S., Espinoza, N., MacDonald, R. J., Allen, N. H., Cañas, C. I., Grant, D., Gressier, A., Stevenson, K. B., Batalha, N. E., Lewis, N. K., Long, D., Wakeford, H. R., Alderson, L., Challener, R. C., Colón, K., Huang, J., Lin, Z., . . . Van Der Marel, R. P. (2025). JWST-TST DREAMS: Secondary Atmosphere Constraints for the Habitable Zone Planet TRAPPIST-1 e. The Astrophysical Journal Letters, 990(2), L53. https://doi.org/10.3847/2041-8213/adf62e
>Camacho, A. (2009). Sulfur bacteria. In Elsevier eBooks (pp. 261–278). https://doi.org/10.1016/b978-012370626-3.00128-9
>Brocks, J., & Summons, R. (2003). Sedimentary hydrocarbons, biomarkers for early life. In Elsevier eBooks (pp. 63–115). https://doi.org/10.1016/b0-08-043751-6/08127-5
>Ortega, R. P. (2020, September 4). Why are plants green? To reduce the noise in photosynthesis. | Quanta Magazine. Quanta Magazine. https://www.quantamagazine.org/why-are-plants-green-to-reduce-the-noise-in-photosynthesis-20200730/
>Arp, T. B., Kistner-Morris, J., Aji, V., Cogdell, R. J., Van Grondelle, R., & Gabor, N. M. (2020). Quieting a noisy antenna reproduces photosynthetic light-harvesting spectra. Science, 368(6498), 1490–1495. https://doi.org/10.1126/science.aba6630
>Barth, P., Carone, L., Barnes, R., Noack, L., Mollière, P., & Henning, T. (2021). Magma Ocean evolution of the TRAPPIST-1 planets. Astrobiology, 21(11), 1325–1349. https://doi.org/10.1089/ast.2020.2277
>Bolmont, E., Raymond, S. N., Von Paris, P., Selsis, F., Hersant, F., Quintana, E. V., & Barclay, T. (2014). FORMATION, TIDAL EVOLUTION, AND HABITABILITY OF THE KEPLER-186 SYSTEM. The Astrophysical Journal, 793(1), 3. https://doi.org/10.1088/0004-637x/793/1/3
>Howell, E. (2020, January 21). 'Orange dwarfs' may be the best stars to study in search for life. Space. https://www.space.com/orange-dwarfs-may-host-habitable-planets.html
>Zolnerkevic, I. (2018, January). Hard and lifeless. Pesquisafapesp. https://revistapesquisa.fapesp.br/en/hard-and-lifeless-2/
>Souto, D., Cunha, K., García-Hernández, D. A., Zamora, O., Prieto, C. A., Smith, V. V., Mahadevan, S., Blake, C., Johnson, J. A., Jönsson, H., Pinsonneault, M., Holtzman, J., Majewski, S. R., Shetrone, M., Teske, J., Nidever, D., Schiavon, R., Sobeck, J., Pérez, A. E. G., . . . Stassun, K. (2017). Chemical Abundances of M-Dwarfs from the Apogee Survey. I. The Exoplanet Hosting Stars Kepler-138 and Kepler-186. The Astrophysical Journal, 835(2), 239. https://doi.org/10.3847/1538-4357/835/2/239
>Borucki, W. J., Agol, E., Fressin, F., Kaltenegger, L., Rowe, J., Isaacson, H., Fischer, D., Batalha, N., Lissauer, J. J., Marcy, G. W., Fabrycky, D., Désert, J., Bryson, S. T., Barclay, T., Bastien, F., Boss, A., Brugamyer, E., Buchhave, L. A., Burke, C., . . . Winn, J. N. (2013). Kepler-62: A Five-Planet System with Planets of 1.4 and 1.6 Earth Radii in the Habitable Zone. Science, 340(6132), 587–590. https://doi.org/10.1126/science.1234702
>Kaltenegger, L., Sasselov, D., & Rugheimer, S. (2013). WATER-PLANETS IN THE HABITABLE ZONE: ATMOSPHERIC CHEMISTRY, OBSERVABLE FEATURES, AND THE CASE OF KEPLER-62 e AND -62 f. The Astrophysical Journal Letters, 775(2), L47. https://doi.org/10.1088/2041-8205/775/2/l47
>Shields, A. L., Barnes, R., Agol, E., Charnay, B., Bitz, C., & Meadows, V. S. (2016). The effect of orbital configuration on the possible climates and habitability of Kepler-62F. Astrobiology, 16(6), 443–464. https://doi.org/10.1089/ast.2015.1353
>Sasaki, T., & Barnes, J. W. (2014). Longevity of moons around habitable planets. International Journal of Astrobiology, 13(4), 324–336. https://doi.org/10.1017/s1473550414000184
>Shan, Y., & Li, G. (2018). Obliquity variations of habitable zone planets Kepler-62f and Kepler-186f. The Astronomical Journal, 155(6), 237. https://doi.org/10.3847/1538-3881/aabfd1
>Guinan, E., Finley, C., Engle, S., Sloane, S., Chawda, A., & Cuntz, M. (2023). Kepler-442 b: Earth-size planet orbiting in the Goldilocks Zone of its old “Goldilocks” K5V host star: Age, XUV Irradiances and Potential for advanced alien Life. Bulletin of the AAS, 55(2).
>Covone, G., Ienco, R. M., Cacciapuoti, L., & Inno, L. (2021). Efficiency of the oxygenic photosynthesis on Earth-like planets in the habitable zone. Monthly Notices of the Royal Astronomical Society, 505(3), 3329–3335. https://doi.org/10.1093/mnras/stab1357
>Barnes, R., Meadows, V. S., & Evans, N. (2015). Comparative habitability of transiting exoplanets. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1509.08922
>Bottyan, T., & Rabago, C. (n.d.). Chemistry of Silicon (Z=14). Chemistry LibreTexts. https://chem.libretexts.org/Bookshelves/Inorganic_Chemistry/Supplemental_Modules_and_Websites_(Inorganic_Chemistry)/Descriptive_Chemistry/Elements_Organized_by_Block/2_p-Block_Elements/Group_14%3A_The_Carbon_Family/Z014_Chemistry_of_Silicon_(Z14)
>Wada, S., Murata, Y., Tokunaga, A. T., & Watanabe, J. (2003). Experimental study of amorphous silicate formation. Astronomy and Astrophysics, 406(3), 783–788. https://doi.org/10.1051/0004-6361:20030750
>Paleontological Research Institution. (n.d.). Silicate Minerals — Earth@Home. Earth@Home. https://earthathome.org/de/minerals/silicate-minerals/
>Wang, J., Zhao, X., Zou, G., Zhang, L., Han, S., Li, Y., Liu, D., Fernandez, C., Li, L., Ren, L., & Peng, Q. (2023). Crystal-defect engineering of electrode materials for energy storage and conversion. Materials Today Nano, 22, 100336. https://doi.org/10.1016/j.mtnano.2023.100336
>Washburn, J., Kvam, E. P., & Liliental-Weber, Z. (1991). Defect formation in epitaxial crystal growth. Journal of Electronic Materials, 20(2), 155–161. https://doi.org/10.1007/bf02653317
>Zhu, M., Yi, Z., Yang, B., & Lee, C. (2020). Making use of nanoenergy from human – Nanogenerator and self-powered sensor enabled sustainable wireless IoT sensory systems. Nano Today, 36, 101016. https://doi.org/10.1016/j.nantod.2020.101016
>Trouwborst, A., & Svenning, C. (2022). Megafauna restoration as a legal obligation: International biodiversity law and the rehabilitation of large mammals in Europe. Review of European, Comparative & International Environmental Law, 31(2), 182-198. https://doi.org/10.1111/reel.12443
>Ilic, D. (2025). Engineered proxies and the illusion of de-extinction. Stem Cell Reports, 102505. https://doi.org/10.1016/j.stemcr.2025.102505
>Palkopoulou, E., Lipson, M., Mallick, S., Nielsen, S., Rohland, N., Baleka, S., Karpinski, E., Ivancevic, A. M., To, H., Kortschak, R. D., Raison, J. M., Qu, Z., Chin, J., Alt, K. W., Claesson, S., Dalén, L., E MacPhee, R. D., Meller, H., Roca, A. L., . . . Reich, D. (2018). A comprehensive genomic history of extinct and living elephants. Proceedings of the National Academy of Sciences of the United States of America, 115(11), E2566. https://doi.org/10.1073/pnas.1720554115
>Liu, S., Westbury, M. V., Dussex, N., Mitchell, K. J., Sinding, M. S., Heintzman, P. D., Duchêne, D. A., Kapp, J. D., Von Seth, J., Heiniger, H., Sánchez-Barreiro, F., Margaryan, A., André-Olsen, R., De Cahsan, B., Meng, G., Yang, C., Chen, L., Van Der Valk, T., Moodley, Y., . . . Gilbert, M. T. P. (2021). Ancient and modern genomes unravel the evolutionary history of the rhinoceros family. Cell, 184(19), 4874-4885.e16. https://doi.org/10.1016/j.cell.2021.07.032
>Piras, P., Silvestro, D., Carotenuto, F., Castiglione, S., Kotsakis, A., Maiorino, L., Melchionna, M., Mondanaro, A., Sansalone, G., Serio, C., Vero, V. A., & Raia, P. (2018). Evolution of the sabertooth mandible: A deadly ecomorphological specialization. Palaeogeography Palaeoclimatology Palaeoecology, 496, 166–174. https://doi.org/10.1016/j.palaeo.2018.01.034
>Meadows, A. J., Crowder, D. W., & Snyder, W. E. (2016). Are wolves just wasps with teeth? What invertebrates can teach us about mammal top predators. Food Webs, 12, 40–48. https://doi.org/10.1016/j.fooweb.2016.09.004
>Williams, S., & Abbott, M. (2025, July 15). Feral camels are overrunning Australia. What to do about it is complicated. National Geographic. https://www.nationalgeographic.com/animals/article/feral-camels-australia-outback
>Thylacine | Tasmanian Wolf |Tasmanian Tiger - Colossal. (n.d.). Colossal. https://colossal.com/thylacine/
>Tasmanian Devils reintroduced into Australian wild. (2020, October 5). BBC. https://www.bbc.com/news/world-australia-54417343
>Smith, C. E. (2013, December 23). Rewilding: should we introduce lions and Komodo dragons to Australia? ABC Listen. https://www.abc.net.au/listen/programs/futuretense/rewilding/4797634
>Ritter, M. (n.d.). Trophic levels and food chains. The Physical Environment. https://www.thephysicalenvironment.com/Book/biogeography/trophic_levels_and_food_chains.html
>Scotese, C. R. (2018). Atlas of Future Plate Tectonic Reconstructions. Research Gate. https://doi.org/10.13140/RG.2.2.13645.74727
>De Gouveia, S. V., Besse, J., De Lamotte, D. F., Greff-Lefftz, M., Lescanne, M., Gueydan, F., & Leparmentier, F. (2018). Evidence of hotspot paths below Arabia and the Horn of Africa and consequences on the Red Sea opening. Earth and Planetary Science Letters, 487, 210–220. https://doi.org/10.1016/j.epsl.2018.01.030
>Fu, X., Qin, J., Ding, C., Wei, Y., & Sun, J. (2024). Effect of increased pCO2 and temperature on the phytoplankton community in the coastal of Yellow Sea. The Science of the Total Environment, 918, 170520. https://doi.org/10.1016/j.scitotenv.2024.170520
>Greenberg, L. (2009). Fire ants. In Elsevier eBooks (pp. 362–364). https://doi.org/10.1016/b978-0-12-374144-8.00108-9
>Jones, K. K., & Seymour, R. S. (2021). Gas exchange and dive behaviour in the diving beetle Platynectes decempunctatus (Coleoptera: Dytiscidae). Journal of Insect Physiology, 133, 104286. https://doi.org/10.1016/j.jinsphys.2021.104286
>Da Silveira, R., Ramalho, E. E., Thorbjarnarson, J. B., & Magnusson, W. E. (2010). Depredation by Jaguars on Caimans and importance of reptiles in the diet of Jaguar. Journal of Herpetology, 44(3), 418–424. https://doi.org/10.1670/08-340.1
>Dacres, K. (n.d.). Panthera tigris (tiger) | INFORMATION | Animal Diversity Web. https://animaldiversity.org/accounts/Panthera_tigris/
>All about Ceylon Swamp Elephant : Vil Aliya (විල් අලියා). (n.d.). AmazingLanka.com. https://amazinglanka.com/wp/swamp-elephant/
>Anhinga. (n.d.). Cornell Lab All About Birds. https://www.allaboutbirds.org/guide/Anhinga/overview
>Areta, J. I., Noriega, J. I., & Agnolin, F. (2007). A giant darter (Pelecaniformes: Anhingidae) from the Upper Miocene of Argentina and weight calculation of fossil Anhingidae. Neues Jahrbuch Für Geologie Und Paläontologie - Abhandlungen, 243(3), 343–350. https://doi.org/10.1127/0077-7749/2007/0243-0343
>Elmer, N. (2011, January). Bull Shark in the Ichthyology Collection. The University of Texas at Austin Biodiversity Center. https://biodiversity.utexas.edu/news/features/bull-shark-ichthyology-collection
>Morais, P., & Dias, E. (2021). Estuaries, a happy place for fish. Frontiers for Young Minds, 9. https://doi.org/10.3389/frym.2021.613862
>Kathiresan, K., & Bingham, B. (2001). Biology of mangroves and mangrove Ecosystems. In Advances in marine biology (pp. 81–251). https://doi.org/10.1016/s0065-2881(01)40003-4
>Martin, H. (2006). Cenozoic climatic change and the development of the arid vegetation in Australia. Journal of Arid Environments, 66(3), 533–563. https://doi.org/10.1016/j.jaridenv.2006.01.009
>Bowler, J. (1976). Aridity in Australia: Age, origins and expression in aeolian landforms and sediments. Earth-Science Reviews, 12(2–3), 279–310. https://doi.org/10.1016/0012-8252(76)90008-8
>Valentine, P., Dabek, L., & Schwartz, K. R. (2021). What is a Tree Kangaroo? Evolutionary History, Adaptation to Life in the Trees, Taxonomy, Genetics, Biogeography, and Conservation Status. In Elsevier eBooks (pp. 3–16). https://doi.org/10.1016/b978-0-12-814675-0.00010-5
>Carver, S., Stannard, G. L., & Martin, A. M. (2023). The Distinctive Biology and Characteristics of the Bare-Nosed Wombat (Vombatus ursinus). Annual Review of Animal Biosciences, 12(1), 135–160. https://doi.org/10.1146/annurev-animal-021022-042133
>Wombats. (n.d.). Bush Heritage Australia. https://www.bushheritage.org.au/species/wombats?srsltid=AfmBOooDT3mpyfKBjyrWeC1VAMhLgLHDUU03WAkYCS27HyO236YQyPiw
>Shorter, G. (n.d.). Dromaius novaehollandiae (emu). Animal Biodiversity Web. https://animaldiversity.org/accounts/Dromaius_novaehollandiae/
>Our Wildlife Factsheet Laughing Kookaburra. (2017). In Our Wildlife Fact Sheet the State of Victoria Department of Environment, Land, Water and Planning. https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwju1f_m7auQAxWmLbkGHUfRLcIQFnoECBYQAQ&url=https%3A%2F%2Fwww.wildlife.vic.gov.au%2F__data%2Fassets%2Fpdf_file%2F0030%2F91389%2FLaughing-Kookaburra.pdf&usg=AOvVaw36ctKeoZqUfsfgQZY-QqbW&opi=89978449
>Feral cats. (n.d.). Australian Government Department of Climate Change, Energy, the Environment and Water. https://www.dcceew.gov.au/environment/invasive-species/feral-animals-australia/feral-cats
>Dingo overview. (n.d.). Environment, Land and Water | Queensland Government. https://www.qld.gov.au/environment/plants-animals/animals/living-with/dingoes/about-dingoes
>Nicol, S. (2013). Behaviour and ecology of monotremes. Neurobiology of the Monotremes. Brain Evolution in Our Distant Mammalian Cousins. http://ecite.utas.edu.au/88827
>Sugden, D. E., & Jamieson, S. S. R. (2018). The pre-glacial landscape of Antarctica. Scottish Geographical Journal, 134(3–4), 203–223. https://doi.org/10.1080/14702541.2018.1535090
>The Royal Geographical Society (with IBG). (n.d.). Antarctica’s climate: the key factors - Discovering Antarctica. Discovering Antarctica. https://discoveringantarctica.org.uk/oceans-atmosphere-landscape/atmosphere-weather-and-climate/key-factors-behind-antarcticas-climate/
>Harada, E., Lee, R. E., Denlinger, D. L., & Goto, S. G. (2014). Life history traits of adults and embryos of the Antarctic midge Belgica antarctica. Polar Biology, 37(8), 1213–1217. https://doi.org/10.1007/s00300-014-1511-0
>Michaud, M. R., Benoit, J. B., Lopez-Martinez, G., Elnitsky, M. A., Lee, R. E., & Denlinger, D. L. (2008). Metabolomics reveals unique and shared metabolic changes in response to heat shock, freezing and desiccation in the Antarctic midge, Belgica antarctica. Journal of Insect Physiology, 54(4), 645–655. https://doi.org/10.1016/j.jinsphys.2008.01.003
>Karima, Z. (2021). Chironomidae: Biology, Ecology and Systematics. In IntechOpen eBooks. https://doi.org/10.5772/intechopen.95577
>King, C. M. (2024b). Biogeography and history of the prehuman native mammal fauna of the New Zealand region. Diversity, 16(1), 45. https://doi.org/10.3390/d16010045
>Wei, F., Hu, Y., Yan, L., Nie, Y., Wu, Q., & Zhang, Z. (2014). Giant Pandas Are Not an Evolutionary cul-de-sac: Evidence from Multidisciplinary Research. Molecular Biology and Evolution, 32(1), 4–12. https://doi.org/10.1093/molbev/msu278
>Furness, R. W., Boesman, P. F. D., & Garcia, E. (2020). Brown Skua (Stercorarius antarcticus). Birds of the World. https://doi.org/10.2173/bow.brnsku3.01
>Fierce and Feathered: the Skuas of Antarctica. (n.d.). Oceanwide Expeditions. https://oceanwide-expeditions.com/blog/skuas-aerial-terrors-of-antarctica
>Knapp, M., Thomas, J. E., Haile, J., Prost, S., Ho, S. Y., Dussex, N., Cameron-Christie, S., Kardailsky, O., Barnett, R., Bunce, M., Gilbert, M. T. P., & Scofield, R. P. (2019). Mitogenomic evidence of close relationships between New Zealand’s extinct giant raptors and small-sized Australian sister-taxa. Molecular Phylogenetics and Evolution, 134, 122–128. https://doi.org/10.1016/j.ympev.2019.01.026
>Southern giant petrel | Pāngurunguru. (n.d.). New Zealand Birds Online the Digital Encyclopaedia of New Zealand Birds. https://www.nzbirdsonline.org.nz/species/southern-giant-petrel
>Hüsing, S., Oms, O., Agustí, J., Garcés, M., Kouwenhoven, T., Krijgsman, W., & Zachariasse, W. (2010). On the late Miocene closure of the Mediterranean–Atlantic gateway through the Guadix basin (southern Spain). Palaeogeography Palaeoclimatology Palaeoecology, 291(3–4), 167–179. https://doi.org/10.1016/j.palaeo.2010.02.005
>Farnsworth, A., Lo, Y. T., Valdes, P. J., Buzan, J. R., Mills, B. J., Merdith, A. S., Scotese, C. R., & Wakeford, H. R. (2023). Climate extremes likely to drive land mammal extinction during next supercontinent assembly. Nature Geoscience, 16(10), 901-908. https://doi.org/10.1038/s41561-023-01259-3
>Saini, N., Pal, K., Sujata, N., Deepak, B., & Mona, S. (2021). Thermophilic algae: A new prospect towards environmental sustainability. Journal of Cleaner Production, 324, 129277. https://doi.org/10.1016/j.jclepro.2021.129277
>Loeffelholz, J., Meese, E., Giovannini, I., Ullibarri, K., Momeni, S., Merfeld, N., Wessel, J., Guidetti, R., Rebecchi, L., & Boothby, T. C. (2024). An evaluation of thermal tolerance in six tardigrade species in an active and dry state. Biology Open, 13(10), bio060485. https://doi.org/10.1242/bio.060485
>Yoder, J. A., Chambers, M. J., Tank, J. L., & Keeney, G. D. (2009). High Temperature Effects on Water Loss and Survival Examining the Hardiness of Female Adults of the Spider Beetles, Mezium affine and Gibbium aequinoctiale. Journal of Insect Science, 9, 68. https://doi.org/10.1673/031.009.6801
>O’Malley-James, J. T., Greaves, J. S., Raven, J. A., & Cockell, C. S. (2012). Swansong biospheres: refuges for life and novel microbial biospheres on terrestrial planets near the end of their habitable lifetimes. International Journal of Astrobiology, 12(2), 99–112. https://doi.org/10.1017/s147355041200047x
>De Araujo, G. G., Rodrigues, F., Gonçalves, F. L., & Galante, D. (2019). Survival and ice nucleation activity of Pseudomonas syringae strains exposed to simulated high-altitude atmospheric conditions. Scientific Reports, 9(1), 1-11. https://doi.org/10.1038/s41598-019-44283-3
>Dodd, C. (2014). PSEUDOMONAS | Introduction. In Elsevier eBooks (pp. 244–247). https://doi.org/10.1016/b978-0-12-384730-0.00282-2
>Jung, K., Yang, D., Kim, M., Seo, H. S., Lim, S., & Bahn, Y. (2016). Unraveling Fungal Radiation Resistance Regulatory Networks through the Genome-Wide Transcriptome and Genetic Analyses of Cryptococcus neoformans. mBio, 7(6). https://doi.org/10.1128/mbio.01483-16
>Irwin, J. A. (2020). Overview of extremophiles and their food and medical applications. In Elsevier eBooks (pp. 65–87). https://doi.org/10.1016/b978-0-12-818322-9.00006-x
>M Kengen, S. W. (2017). ‘Pyrococcus furiosus, 30 years on’. Microbial Biotechnology, 10(6), 1441. https://doi.org/10.1111/1751-7915.12695
>Teske, A. (2009). Deep-Sea hydrothermal vents. In Elsevier eBooks (pp. 80–90). https://doi.org/10.1016/b978-012373944-5.00276-5
>Massazza, D., Robledo, A. J., Simón, C. N. R., Busalmen, J. P., & Bonanni, S. (2021). Energetics, electron uptake mechanisms and limitations of electroautotrophs growing on biocathodes – A review. Bioresource Technology, 342, 125893. https://doi.org/10.1016/j.biortech.2021.125893
>Tillman, N. T. (2023, July 29). Red giant stars: Facts, definition & the future of the sun. Space. https://www.space.com/22471-red-giant-stars.html
>Chapter 6: Aging into Gianthood - NASA Science. (n.d.). NASA Science. https://science.nasa.gov/exoplanets/resources/life-and-death/chapter-6/
>White Dwarfs. (n.d.). National Geographic. https://www.nationalgeographic.com/science/article/white-dwarfs
>Gough, E. (2023, September 19). Galaxies breathe gas, and when they stop, no more stars form. Universe Today. https://www.universetoday.com/articles/galaxies-breathe-gas-and-when-they-stop-no-more-stars-form
>Tumlinson, J., Peeples, M. S., & Werk, J. K. (2022). The Circumgalactic Medium. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1709.09180
>Siegel, E. (2024, May 24). Ask Ethan: Will the Universe ever reach equilibrium? Big Think. https://bigthink.com/starts-with-a-bang/universe-reach-equilibrium/
>Azarian, B. (2023, February 28). Life Need Not Ever End. NOEMA. https://www.noemamag.com/life-need-not-ever-end/
>Siegel, E. (2018, November 12). Ask Ethan: How do black holes actually evaporate? Forbes. Siegel, E. (2018, November 12). Ask Ethan: How do black holes actually evaporate? Forbes. https://www.forbes.com/sites/startswithabang/2018/11/03/ask-ethan-how-do-black-holes-actually-evaporate/
>Siegel, E. (2023, October 27). Ask Ethan: How did the Universe truly begin? Big Think. https://bigthink.com/starts-with-a-bang/how-universe-truly-begin/
>Feeney, S. M., Johnson, M. C., Mortlock, D. J., & Peiris, H. V. (2011). First observational tests of eternal inflation. Physical Review Letters, 107(7), 071301. https://doi.org/10.1103/physrevlett.107.071301