Y. Ito and T. Yoshidome (Corresponding author, 学生指導),
“Prediction of the Hydration Structures at the Protein–Protein Interface of Dimers using Deep Learning”
Chem. Phys. Lett., Vol. 878, 142372 (2025). [Open access]
Shota Arai, Gota Kikugawa, and Takashi Yoshidome (Corresponding author, ポスドク指導)
“Extraction of Molecular Information from Experimental Data of Liquids using Manifold Learning”
Journal of Molecular Liquids, Vol. 414, 126251 (2024). [Open access]
K. Kawama, Y. Fukushima, M. Ikeguchi, M. Ohta, and T. Yoshidome (Corresponding author, 学生指導)
"gr Predictor: A Deep-Learning Model For Predicting the Hydration Structure of Proteins",
Journal of Chemical Information and Modeling, Vol. 62, 4460 (2022).
プログラム"gr Predictor":https://github.com/YoshidomeGroup-Hydration/gr-predictor
小田垣 孝、吉留 崇、大久保 毅、
「現代の物性物理学」(M. L. Cohen and S. G. Louie: Fundamentals of Condensed Matter Physics)
吉岡書店、2021年9月出版 Amazonのページ
吉留 崇、門脇 颯汰、“分子動力学法を用いたタンパク質熱変性における遷移状態解析” (Oral)
荒井 翔太、高山 裕貴、吉留 崇、"「マニフォールド学習と計算機実験」によるX線タイコグラフィー実験データ解析法の提案" (Oral & Poster)
野地 隼平、吉留 崇、“液体の統計力学で明らかにするシニョリン構造の圧力依存性:側鎖がもたらす影響” (Poster)
福島 魁⽃、大田 雅照、池口 満徳、吉留 崇、“深層学習を用いたドッキングにおける水分子-リガンド原子置換の研究” (Poster)
佐野 渓、吉留 崇、“深層学習を用いたタンパク質-リガンド複合体の水和分布予測” (Poster)
Takashi Yoshidome, Kosuke Kawama, Yusaku Fukushima, Mitsunori Ikeguchi, and Masateru Ohta
“Deep-Learning Model for Protein Hydration”(Oral)
Yusaku Fukushima and Takashi Yoshidome(発表者)
“Prediction of Hydration Free Energy Distributions around Proteins using Deep Learning”(Poster)
Shota Arai, Yuki Takayama, and Takashi Yoshidome
"Prediction of Gas Diffusion Coefficients Using Manifold Learning and X-ray Ptychography Data" (Poster)
水和に主眼を置いたタンパク質折り畳み・変性・機能発現機構の統一的理解、及び創薬への応用
マニフォールドラーニングを用いた低温電子顕微鏡実験データ分類・解析法の開発と応用
自由エネルギーランドスケープ理論を用いたガラス転移の理解