Y. Fukushima and T. Yoshidome (Corresponding author, 学生指導),
“Deep GIST: A Deep-Learning Model for Predicting the Distribution of Hydration Thermodynamics around Proteins”
Journal of Chemical Information and Modeling, accepted for publication (2026).
S. Arai and T. Yoshidome (ポスドク指導),
"PorousGen: An Efficient Algorithm for Generating Porous Structures with Accurate Porosity and Uniform Density Distribution"
Computational Materials Science, Vol. 264, 114478 (2026). [Open access]
Y. Ito and T. Yoshidome (Corresponding author, 学生指導),
“Prediction of the Hydration Structures at the Protein–Protein Interface of Dimers using Deep Learning”
Chemical Physics Letters, Vol. 878, 142372 (2025). [Open access]
K. Kawama, Y. Fukushima, M. Ikeguchi, M. Ohta, and T. Yoshidome (Corresponding author, 学生指導)
"gr Predictor: A Deep-Learning Model For Predicting the Hydration Structure of Proteins",
Journal of Chemical Information and Modeling, Vol. 62, 4460 (2022).
プログラム"gr Predictor":https://github.com/YoshidomeGroup-Hydration/gr-predictor
小田垣 孝、吉留 崇、大久保 毅、
「現代の物性物理学」(M. L. Cohen and S. G. Louie: Fundamentals of Condensed Matter Physics)
吉岡書店、2021年9月出版 Amazonのページ
Yusaku Fukushima and Takashi Yoshidome(発表者)
“Prediction of Hydration Free Energy Distributions around Proteins using Deep Learning”(Poster, 3/17)
Shota Arai, Yuki Takayama, and Takashi Yoshidome
"Prediction of Gas Diffusion Coefficients Using Manifold Learning and X-ray Ptychography Data" (Poster, 3/18)
荒井 翔太、吉留 崇
“空隙率制御を可能にする高速な多孔質構造生成法の提案”(Poster)
水和に主眼を置いたタンパク質折り畳み・変性・機能発現機構の統一的理解、及び創薬への応用
マニフォールドラーニングを用いた低温電子顕微鏡実験データ分類・解析法の開発と応用
自由エネルギーランドスケープ理論を用いたガラス転移の理解