Postdoc researcher
ScaDS.AI (Leipzig University)
Guest researcher
Helmholtz Centre for Environmental Research
PhD in Civil Engineering (Water Resources)
With honors
Federal University of Ceara
MBA in Data Science
São Paulo University
Masters in Civil Engineering (Water Resources)
Federal University of Ceara
Bachelor in Environmental Engineering
Federal University of Ceara
Magna cum laude
Exchange period in the Missouri University of Science and Technology (USA)
Scientific papers
Lima, L.O., Santos, L.D.C., Nunes Carvalho, T. M., Souza Filho, F. A. (2024). Análise do desempenho de valas de infiltração para controle pluvial em cenários de mudanças climáticas: estudo de caso Fortaleza (CE). Revista DAE.
Nunes Carvalho, T. M., Souza Filho, F. A., Brito, M. M. (2024). Unveiling Water Allocation Dynamics: A Text Analysis of 25 Years of Stakeholder Meetings. Env Research Letters.
Souza Filho, F. A., Carvalho Studart, T.M., Filho, J.D.P. et al. (2023). Integrated proactive drought management in hydrosystems and cities: building a nine-step participatory planning methodology. Nat Hazards, 115, 2179–2204.
Carneiro, B. L. D. S., Souza Filho, F. D. A., Nunes Carvalho, T. M., Raulino, J. B. S. (2022). Hydrological risk of dam failure under climate change. Revista Brasileira de Recursos Hídricos, 27.
Ribeiro, F. W., da Silva, S. M., de Souza Filho, F. D. A., Nunes Carvalho, T. M., & de M. Lopes, T. M. (2022). Diversification of urban water supply: an assessment of social costs and water production costs. Water Policy, 24(6), 980-997.
Nunes Carvalho, T. M., Lima Neto, I. E., & Souza Filho, F. D. A. (2022). Uncovering the influence of hydrological and climate variables in chlorophyll-A concentration in tropical reservoirs with machine learning. Environmental Science and Pollution Research, 1-16.
Nunes Carvalho, T. M., & de Souza Filho, F. D. A. (2021). A data-driven model to evaluate the medium-term effect of contingent pricing policies on residential water demand. Environmental Challenges, 3, 100033.
Nunes Carvalho, T. M., Souza Filho, F. A., & Porto, V. C. (2021). Urban water demand modeling using machine learning techniques: case study of fortaleza, Brazil. Journal of Water Resources Planning and Management, 147(1), 05020026.
Porto, V. C., de Souza Filho, F. D. A., Nunes Carvalho, T. M., de Carvalho Studart, T. M., & Portela, M. M. (2021). A GLM copula approach for multisite annual streamflow generation. Journal of Hydrology, 598, 126226.
Carvalho, T. M. N., Souza Filho, F. A. (2021). Variational Mode Decomposition Hybridized With Gradient Boost Regression for Seasonal Forecast of Residential Water Demand. Water Resources Management, 35(10), 3431-3445.
Xavier, L. C. P., Silva, S. M. O. D., Nunes Carvalho, T. M., Pontes Filho, J. D., & Souza Filho, F. D. A. D. (2020). Use of machine learning in evaluation of drought perception in irrigated agriculture: the case of an irrigated perimeter in Brazil. Water, 12(6), 1546.
Marques de Oliveira, L., Maria Oliveira da Silva, S., de Assis de Souza Filho, F., Nunes Carvalho, T., & Locarno Frota, R. (2020). Forecasting urban water demand using cellular automata. Water, 12(7), 2038.
Nunes Carvalho, T. M., Silva, S. M. O. D., Araújo, C. B., Frota, R., Xavier, L. C., Bezerra, B., & Souza Filho, F. D. A. D. (2021). Índice de vulnerabilidade à COVID-19: uma aplicação para a cidade de Fortaleza (CE), Brasil. Engenharia Sanitaria e Ambiental, 26, 731-739.
Nunes Carvalho, T. M., de Souza Filho, F. D. A., & Medeiros de Saboia, M. A. (2020). Performance of rainwater tanks for runoff reduction under climate change scenarios: a case study in Brazil. Urban Water Journal, 17(10), 912-922.
Book chapters
Prediction of seasonal water demand in Fortaleza
Modelling and adaptation to hydrological extremes in the context of climate varability and climate change
Application of Dual Stochastic Dynamic Programming in optimizing the short-term operation of the Jaguaribe-Metropolitano reservoir system
Gestão Adaptativa do risco climático de seca
Participation in the smart learning promoted during the Civil Eng Week at UFC | 2021
ID de verificação: 010102001808450971210157