Search this site
Embedded Files
Skip to main content
Skip to navigation
tackle AI with Shriyash
Home
Numpy
Benefits of using NumPy
Creating NumPy ndarrays
Using Built-in Functions to Create ndarrays
Accessing, Deleting, and Inserting Elements Into ndarrays
Slicing ndarrays
Boolean Indexing, Set Operations, and Sorting
Arithmetic operations and Broadcasting
Glossary
Numpy Mini Project
Numpy Mini Project
pandas
Datasets
pandas basics
creating pandas series
Accessing and Deleting Elements in Pandas Series
Arithmetic Operations on Pandas Series
Creating Pandas DataFrames
Accessing Elements in Pandas DataFrames
Dealing with NaN
Loading Data into a pandas DataFrame
Glossary
Pandas Mini-Project
Matplotlib and Seaborn Part 1
DataSet
Lesson Overview
Bar Charts
Absolute vs Relative Frequency
Counting Missing Data
Pie Charts
Histograms
Figures, Axes, and Subplots
Choosing a Plot for Discrete Data
Descriptive Statistics, Outliers, and Axis Limits
Scales and Transformations
Glossary
Extra: Kernel Density Estimation
Practice
Matplotlib and Seaborn Part 2
Datasets
Scatterplots and Correlation
Overplotting, Transparency, and Jitter
Heat Maps
Violin Plots
Box Plots
Clustered Bar Charts
Faceting
Adapted Bar Charts
Line Plots
Lession Summary
Practice
Linear Algebra
Working with Equations
SkLearn
PreProcessing
Data Cleaning
Feature Selection
Transformations
Machine Learning
Intro
Data Visualizations
Data Wrangling
Linear Regression
Linear Regression & Inference 2
K-Nearest Neighbors
K-Nearest Neighbors 2
Bias report
Artificial intelligence
Intro
Neural Networks
Fine-Tuning Neural Networks
Convolutional Neural Networks
Deep Learning Project
Natural language processing
Natural language processing 2
Neural Network for NLP
Stable Diffusion
Jupyter Lite
Free Resources
Discussion Page
tackle AI with Shriyash
Glossary
Glossary
Below is the summary of all the functions and methods that you learned in this lesson:
Category: Initialization and Utility
pandas.read_csv(relative_path_to_file)
Reads a comma-separated values (csv) file present at relative_path_to_file and loads it as a DataFrame
pandas.DataFrame(data)
Returns a 2-D heterogeneous tabular data. Note: There are other optional arguments as well that you can use to create a dataframe.
pandas.Series(data, index)
Returns 1-D ndarray with axis labels
pandas.Series.shape
pandas.DataFrame.shape
Returns a tuple representing the dimensions
pandas.Series.ndim
pandas.DataFrame.ndim
Returns the number of the dimensions (rank). It will return 1 in case of a Series
pandas.Series.size
pandas.DataFrame.size
Returns the number of elements
pandas.Series.values
Returns the data available in the Series
pandas.Series.index
Returns the indexes available in the Series
pandas.DataFrame.isnull()
Returns a same sized object having True for NaN elements and False otherwise.
pandas.DataFrame.count(axis)
Returns the count of non-NaN values along the given axis. If axis=0, it will count down the dataframe, meaning column-wise count of non-NaN values.
pandas.DataFrame.head([n])
Return the first
n
rows from the dataframe. By default, n=5.
pandas.DataFrame.tail([n])
Return the last
n
rows from the dataframe. By default, n=5. Supports negative indexing as well.
pandas.DataFrame.describe()
Generate the descriptive statistics, such as, count, mean, std deviation, min, and max.
pandas.DataFrame.min()
Returns the minimum of the values along the given axis.
pandas.DataFrame.max()
Returns the maximum of the values along the given axis.
pandas.DataFrame. mean()
Returns the mean of the values along the given axis.
pandas.DataFrame.corr()
Compute pairwise correlation of columns, excluding NA/null values.
pandas.DataFrame.rolling(windows)
Provide rolling window calculation, such as pandas.DataFrame.rolling(15).mean() for rolling mean over window size of 15.
pandas.DataFrame.loc[label]
Access a group of rows and columns by label(s)
pandas.DataFrame.groupby(mapping_function)
Groups the dataframe using a given mapper function or or by a Series of columns.
Category: Manipulation
pandas.Series.drop(index)
Drops the element positioned at the given index(es)
pandas.DataFrame.drop(labels)
Drop specified labels (entire columns or rows) from the dataframe.
pandas.DataFrame.pop(item)
Return the item and drop it from the frame. If not found, then raise a KeyError.
pandas.DataFrame.insert(location, column, values)
Insert column having given values into DataFrame at specified location.
pandas.DataFrame.rename(dictionary-like)
Rename label(s) (columns or row-indexes) as mentioned in the dictionary-like
pandas.DataFrame.set_index(keys)
Set the DataFrame's row-indexes using existing column-values.
pandas.DataFrame.dropna(axis)
Remove rows (if axis=0) or columns (if axis=1) that contain missing values.
pandas.DataFrame.fillna(value, method, axis)
Replace NaN values with the specified value along the given axis, and using the given method (‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None)
pandas.DataFrame.interpolate(method, axis)
Replace the NaN values with the estimated value calculated using the given method along the given axis.
For any other requirement, refer to the complete list of function definitions for
DataFrame
and
Series
classes.
Google Sites
Report abuse
Google Sites
Report abuse