Like other power supplies, an SMPS transfers power from a DC or AC source (often mains power, see AC adapter) to DC loads, such as a personal computer, while converting voltage and current characteristics. Unlike a linear power supply, the pass transistor of a switching-mode supply continually switches between low-dissipation, full-on and full-off states, and spends very little time in the high dissipation transitions, which minimizes wasted energy. A hypothetical ideal switched-mode power supply dissipates no power. Voltage regulation is achieved by varying the ratio of on-to-off time (also known as duty cycles). In contrast, a linear power supply regulates the output voltage by continually dissipating power in the pass transistor. The switched-mode power supply's higher electrical efficiency is an important advantage.

Switched-mode power supplies can also be substantially smaller and lighter than a linear supply because the transformer can be much smaller. This is because it operates at a high switching frequency which ranges from several hundred kHz to several MHz in contrast to the 50 or 60 Hz mains frequency. Despite the reduced transformer size, the power supply topology and the requirement for electromagnetic interference (EMI) suppression in commercial designs result in a usually much greater component count and corresponding circuit complexity.


Switch Mode Power Supply Pdf E-book Free Download


DOWNLOAD 🔥 https://geags.com/2yGB0A 🔥



Switching regulators are used as replacements for linear regulators when higher efficiency, smaller size or lighter weight is required. They are, however, more complicated; switching currents can cause electrical noise problems if not carefully suppressed, and simple designs may have a poor power factor.

In contrast, a SMPS changes output voltage and current by switching ideally lossless storage elements, such as inductors and capacitors, between different electrical configurations. Ideal switching elements (approximated by transistors operated outside of their active mode) have no resistance when "on" and carry no current when "off", and so converters with ideal components would operate with 100% efficiency (i.e., all input power is delivered to the load; no power is wasted as dissipated heat). In reality, these ideal components do not exist, so a switching power supply cannot be 100% efficient, but it is still a significant improvement in efficiency over a linear regulator.

In a SMPS, the output current flow depends on the input power signal, the storage elements and circuit topologies used, and also on the pattern used (e.g., pulse-width modulation with an adjustable duty cycle) to drive the switching elements. The spectral density of these switching waveforms has energy concentrated at relatively high frequencies. As such, switching transients and ripple introduced onto the output waveforms can be filtered with a small LC filter.

Disadvantages include greater complexity, the generation of high-amplitude, high-frequency energy that the low-pass filter must block to avoid electromagnetic interference (EMI), a ripple voltage at the switching frequency and its harmonic frequencies.

Very low-cost SMPSs may couple electrical switching noise back onto the mains power line, causing interference with devices connected to the same phase, such as A/V equipment. Non-power-factor-corrected SMPSs also cause harmonic distortion.

The inverter stage converts DC, whether directly from the input or from the rectifier stage described above, to AC by running it through a power oscillator, whose output transformer is very small with few windings, at a frequency of tens or hundreds of kilohertz. The frequency is usually chosen to be above 20 kHz, to make it inaudible to humans. The switching is implemented as a multistage (to achieve high gain) MOSFET amplifier. MOSFETs are a type of transistor with a low on-resistance and a high current-handling capacity.

If the output is required to be isolated from the input, as is usually the case in mains power supplies, the inverted AC is used to drive the primary winding of a high-frequency transformer. This converts the voltage up or down to the required output level on its secondary winding. The output transformer in the block diagram serves this purpose.

If a DC output is required, the AC output from the transformer is rectified. For output voltages above ten volts or so, ordinary silicon diodes are commonly used. For lower voltages, Schottky diodes are commonly used as the rectifier elements; they have the advantages of faster recovery times than silicon diodes (allowing low-loss operation at higher frequencies) and a lower voltage drop when conducting. For even lower output voltages, MOSFETs may be used as synchronous rectifiers; compared to Schottky diodes, these have even lower conducting state voltage drops.

A feedback circuit monitors the output voltage and compares it with a reference voltage. Depending on design and safety requirements, the controller may contain an isolation mechanism (such as an opto-coupler) to isolate it from the DC output. Switching supplies in computers, TVs and VCRs have these opto-couplers to tightly control the output voltage.

Open-loop regulators do not have a feedback circuit. Instead, they rely on feeding a constant voltage to the input of the transformer or inductor, and assume that the output will be correct. Regulated designs compensate for the impedance of the transformer or coil. Monopolar designs also compensate for the magnetic hysteresis of the core.

Any switched-mode power supply that gets its power from an AC power line (called an "off-line" converter[39]) requires a transformer for galvanic isolation.[citation needed] Some DC-to-DC converters may also include a transformer, although isolation may not be critical in these cases. SMPS transformers run at high frequencies. Most of the cost savings (and space savings) in off-line power supplies result from the smaller size of the high-frequency transformer compared to the 50/60 Hz transformers formerly used. There are additional design tradeoffs.[40]

The terminal voltage of a transformer is proportional to the product of the core area, magnetic flux, and frequency. By using a much higher frequency, the core area (and so the mass of the core) can be greatly reduced. However, core losses increase at higher frequencies. Cores generally use ferrite material which has a low loss at the high frequencies and high flux densities used. The laminated iron cores of lower-frequency (

At low frequencies (such as the line frequency of 50 or 60 Hz), designers can usually ignore the skin effect. For these frequencies, the skin effect is only significant when the conductors are large, more than 0.3 inches (7.6 mm) in diameter.

The skin effect is exacerbated by the harmonics present in the high-speed pulse-width modulation (PWM) switching waveforms. The appropriate skin depth is not just the depth at the fundamental, but also the skin depths at the harmonics.[41]

Simple off-line switched mode power supplies incorporate a simple full-wave rectifier connected to a large energy-storing capacitor. Such SMPSs draw current from the AC line in short pulses when the mains instantaneous voltage exceeds the voltage across this capacitor. During the remaining portion of the AC cycle the capacitor provides energy to the power supply.

As a result, the input current of such basic switched mode power supplies has high harmonic content and relatively low power factor. This creates extra load on utility lines, increases heating of building wiring, the utility transformers, and standard AC electric motors, and may cause stability problems in some applications such as in emergency generator systems or aircraft generators. Harmonics can be removed by filtering, but the filters are expensive. Unlike displacement power factor created by linear inductive or capacitive loads, this distortion cannot be corrected by addition of a single linear component. Additional circuits are required to counteract the effect of the brief current pulses. Putting a current regulated boost chopper stage after the off-line rectifier (to charge the storage capacitor) can correct the power factor, but increases the complexity and cost.

In 2001, the European Union put into effect the standard IEC 61000-3-2 to set limits on the harmonics of the AC input current up to the 40th harmonic for equipment above 75 W. The standard defines four classes of equipment depending on its type and current waveform. The most rigorous limits (class D) are established for personal computers, computer monitors, and TV receivers. To comply with these requirements, modern switched-mode power supplies normally include an additional power factor correction (PFC) stage.

Non-isolated converters are simplest, with the three basic types using a single inductor for energy storage. In the voltage relation column, D is the duty cycle of the converter, and can vary from 0 to 1. The input voltage (V1) is assumed to be greater than zero; if it is negative, for consistency, negate the output voltage (V2).

All isolated topologies include a transformer, and thus can produce an output of higher or lower voltage than the input by adjusting the turns ratio.[44][45] For some topologies, multiple windings can be placed on the transformer to produce multiple output voltages.[46] Some converters use the transformer for energy storage, while others use a separate inductor.

In a quasi-resonant zero-current/zero-voltage switch (ZCS/ZVS) "each switch cycle delivers a quantized 'packet' of energy to the converter output, and switch turn-on and turn-off occurs at zero current and voltage, resulting in an essentially lossless switch."[50] Quasi-resonant switching, also known as valley switching, reduces EMI in the power supply by two methods:

Higher input voltage and synchronous rectification mode makes the conversion process more efficient. The power consumption of the controller also has to be taken into account. Higher switching frequency allows component sizes to be shrunk, but can produce more RFI. A resonant forward converter produces the lowest EMI of any SMPS approach because it uses a soft-switching resonant waveform compared with conventional hard switching.[citation needed] 152ee80cbc

dynamic earth kmz file download

bangla bornomala software download for pc

dj snake lil jon turn down for what mp3 song download