2025

[30] “Improving the TADF Properties of Deep-Blue Multiple-Resonance Emitters by Strategic Oxygen–Sulfur Replacement

Ochi, J.; Yamasaki, Y.; Oda, S.; Kondo, M.; Kondo, Y.; Hayakawa, M.; Hatakeyama, T.

Mater. Horiz. 2025, ASAP. doi

[29] “One-Shot Synthesis of BN-Embedded Hexabenzocoronene via a Dearomative Triple Borylation

Nakatsuka, S.; Yamamoto, T.; Abe, H.; Kiriyama, S.; Mamada, M.; Yasuda, N.; Oda, S.; Adachi, C.; Hatakeyama, T.

Chem 2025, ASAP. doi

[28] “Late-Stage C─N Bond Cleavage Enables Diversification of Multiple Resonance Materials

Mamada, M.; Horiuchi, M.; Hao, J.; Matsuno, N.; Tanaka, K.; Naveen, K. R.; Hayakawa, M.; Ochi, J.; Oda, S.; Kondo, Y.; Hatakeyama, T.

Angew. Chem. Int. Ed. 2025, e202509606. doi

[27] "Approaching National Television System Committee Blue Gamut Through Asymmetric Modification of MR-TADF Material"

Ochi, J.; Yamasaki, Y.; Oda, S.; Kondo, M.; Ikeno, A.; Kondo, Y.; Hatakeyama, T.

​Adv. Opt. Mater. 2025, 2402939. doi

2024年

[26] "Efficient Deep-Blue Multiple-Resonance Emitters Based on Azepine-Decorated ν-DABNA for CIEy below 0.06"

Mamada, M.; Aoyama, A.; Uchida, R.; Ochi, J.; Oda, S.; Kondo, Y.; Kondo, M.; Hatakeyama, T.

​Adv. Mater. 2024, 36, 2402905. doi

[25] "“Core–Shell” Wave Function Modulation in Organic Narrowband Emitters"

Hayakawa, M.; Tang, X.; Ueda, Y.; Eguchi, H.; Kondo, M.; Oda, S.; Fan, X.-C.; Lestanto, G. N. I.; Adachi, C.; Hatakeyama, T.

J. Am. Chem. Soc. 2024, 146, 18331–18340. doi

[24] “Bright, Efficient, and Stable Pure-Green Hyperfluorescent Organic Light-Emitting Diodes by Judicious Molecular Design"

Lee, Y.-T.; Chan, C.-Y.; Matsuno, N.; Uemura, S.; Oda, S.; Kondo, M.; Weerasinghe, R. W.; Hu, Y.; Lestanto, G. N. I.; Tsuchiya, Y.; Li, Y.; Hatakeyama, T.; Adachi, C.

Nature Commun. 2024, 15, 3174. doi

​[23] “Highly Efficient Multi-Resonance Thermally Activated Delayed Fluorescence Material toward a BT. 2020 Deep-Blue Emitter"

Ochi, J.; Yamasaki, Y.; Tanaka, K.; Kondo, Y.; Isayama, K.; Oda, S.; Kondo, M.; Hatakeyama, T.

Nature Commun. 2024, 15, 2361. doi

2023年

​[22] “One-Shot Construction of BN-Embedded Heptadecacene Framework Exhibiting Ultra-narrowband Green Thermally Activated Delayed Fluorescence"

Sano, Y.; Shintani, T.;  Hayakawa, M.; Oda, S.; Kondo, M.; Matsushita, T.; Hatakeyama, T.

J. Am. Chem. Soc. 2023, 145, 11504–11511. doi

​[21] “Sequential Multiple Borylation Toward an Ultrapure Green Thermally Activated Delayed Fluorescence Material"

Uemura, S.; Oda, S.; Hayakawa, M.; Kawasumi, R.; Ikeda, N.; Lee, Y.-T.; Chan, C.-Y.; Tsuchiya, Y.; Adachi, C.; Hatakeyama, T.

J. Am. Chem. Soc. 2023, 45, 1505–1511. doi

Selected as a Supplementary Cover.

​[20] “Very Low Lasing Threshold of DABNA Derivatives with DFB Structures"

Mamada, M.; Maedera, S.; Oda, S.; Nguyen, T. B.;  Nakanotani, H.; Hatakeyama, T.; Adachi, C.

Mater. Chem. Front. 2023, 7, 259–266. doi

​[19] “Ultra-Narrowband Blue Multi-Resonance Thermally Activated Delayed Fluorescence Materials"

Oda, S.; Kawakami,  B.; Horiuchi, M.; Yamasaki, Y.;  Kawasumi, R.; Hatakeyama, T. 

Adv. Sci. 2023, 10, 2205070. doi

​2022年

​[18] “Development of Pure Green Thermally Activated Delayed Fluorescence Material by Cyano Substitution"

Oda, S.; Sugitani, T.; Tanaka, H.; Tabata, K.; Kawasumi, R.; Hatakeyama, T. 

Adv. Mater. 2022, 34, 2201778. doi

​[17] “One-Shot Synthesis of Expanded Heterohelicene Exhibiting Narrowband Thermally Activated Delayed Fluorescence"

Oda, S.; Kawakami, B.; Yamasaki, Y.; Matsumoto, R.; Yoshioka, M.; Fukushima, D.; Nakatsuka, S.; Hatakeyama, T.

J. Am. Chem. Soc. 2022, 144, 106–112. doi

​2021年

[16] “Hypsochromic Shift of Multiple-Resonance-Induced Thermally Activated Delayed Fluorescence by Oxygen Atom Incorporation”

Tanaka, H.; Oda, S.; Ricci, G.; Gotoh, H.; Tabata, K.; Kawasumi, R.; Beljonne, D.; Olivier, Y.; Hatakeyama, T.

Angew. Chem. Int. Ed. 2021, 60, 17910–17914. doi

[15] “Development of One-Shot/One-Pot Borylation Reactions toward Organoboron-Based Materials” 

Oda. S.; Hatakeyama, T.

Bull. Chem. Soc. Jpn. 2021, 94, 950–960. doi

[14] “Carbazole-Based DABNA Analogues as Highly Efficient Thermally Activated Delayed Fluorescence Materials for Narrowband Organic Light-Emitting Diodes”

Oda, S.; Kumano, W.; Hama, T.; Kawasumi, R.; Yoshiura, K.; Hatakeyama, T.

Angew. Chem. Int. Ed. 2021, 60, 2882–2886. doi

​2020年

[13] “Solution-Processable Pure Green Thermally Activated Delayed Fluorescence Emitter Based on the Multiple Resonance Effect”

Ikeda, N.; Oda, S.; Matsumoto, R.; Yoshioka, M.; Fukushima, D.; Yoshiura, K.; Hatakeyama, T. 

Adv. Mater. 2020, 32, 2004072. doi

[12] “Multiple Electrophilic C–H Borylation of Arenes Using Boron Triiodide”

Oda, S.; Ueura, K.; Kawakami, B.; Hatakeyama, T.

Org. Lett. 2020, 22, 700−704. doi

2019年

[11] “Multiple Resonance Effect-Induced Sky-Blue Thermally Activated Delayed Fluorescence with a Narrow Emission Band”

Oda, S.; Kawakami, B.; Kawasumi, R.; Okita, R.; Hatakeyama, T.

Org. Lett. 2019, 21, 9311−9314. doi

Selected as a Supplementary Cover.

​[10] “Narrowband Deep-Blue Organic Light-Emitting Diode Featuring an Organoboron-Based Emitter”

Kondo, Y.; Yoshiura, K.; Kitera, S.; Nishi, H.; Oda, S.; Gotoh, H.; Sasada, Y.; Yanai, M.; Hatakeyama, T.

Nature Photonics 2019, 13, 678−682. doi

[9] “Tetracoordinate Boron-Fused Double [5]Helicenes as Cathode Active Materials for Lithium Batteries”

Oda, S.; Shimizu, T.; Katayama, T.; Yoshikawa, H.; Hatakeyama, T.

Org. Lett. 2019, 21, 1770−1773. doi

[8] “Synthesis of Tetracoordinate Boron-Fused Benzoaceanthrylene Analogs via Tandem Electrophilic C–H Borylation”

Oda, S.; Abe, H.; Yasuda, N.; Hatakeyama, T. 

Chem. Asian. J. 2019, 14, 1657−1661. doi

​2018年

[7] “One-shot Multiple Borylation toward BN-Doped Nanographenes”

Matsui, K.; Oda, S.; Yoshiura, K.; Nakajima, K.; Yasuda, N.; Hatakeyama, T.

J. Am. Chem. Soc. 2018, 140, 1195–1198. doi

Selected as a Supplementary Cover.

2016年以前

[6] “Ruthenium-catalyzed Transfer Hydrogenation for C–C Bond Formation: Hydrohydroxyalkylation and Hydroaminoalkylation via Reactant Redox Pairs”

Perez, F.; Oda, S.; Geary, L. M.; Krische, M. J.

Top. Curr. Chem. 2016, 374, 365. doi

[5] “Diene Hydroaminomethylation via Ruthenium-catalyzed C–C Bond Forming Transfer Hydrogenation: Beyond Carbonylation”

Oda, S.; Franke, J.; Krische, M. J.

Chem. Sci. 2016, 7, 136–141. doi

[4] “Hydroaminomethylation Beyond Carbonylation: Allene–Imine Reductive Coupling by Ruthenium-Catalyzed Transfer Hydrogenation”

Oda, S.; Sam, B.; Krische, M. J. 

Angew. Chem. Int. Ed. 2015, 54, 8525–8528. doi

[3] “Stereodivergent Approach to the Avermectins based on “Super Silyl” Directed Aldol Reactions”

Brady, P. B.; Oda, S.; Yamamoto, H. 

Org. Lett. 2014, 16, 3864–3867. doi

[2] “Synthesis of β-Hydroxy-α-haloesters through Super Silyl Ester Directed Syn-Selective Aldol Reaction”

Oda, S.; Yamamoto, H.

Org. Lett. 2013, 15, 6030–6033. doi

[1] “Generation of Organolithium Compounds bearing Super Silyl Ester and their Application to Matteson Rearrangement”

Oda, S.; Yamamoto, H.

Angew. Chem. Int. Ed. 2013, 52, 8165–8168. doi