Publications:
[21] H. Rewri and S. Kour, Isotropy group of Lotka-Volterra derivations , J. Pure Appl. Algebra, (accepted 2025).
[20] A. Banerjee and S. Kour, Entwined comodules and contramodules over coalgebras with several objects: Frobenius, separability and Maschke theorems, J. Algebra, 683(2025), 533-575.
[19] D. Ahuja and S. Kour, Differential torsion theories on Eilenberg-Moore categories of monads, J. Pure Appl. Algebra, 229(2025), 107910.
[18] A. Banerjee and S. Kour, Measurings of Hopf algebroids and morphisms in cyclic (co)homology theories, Advances in Mathematics, 442(2024), 109581.
[17] D. Ahuja and S. Kour, Grothendieck's Vanishing and Non-vanishing Theorems in abstract module category, Appl. Categ. Structures, 32(2024), 9.
[16] M. Balodi, A. Banerjee and S. Kour, Comodule theories in Grothendieck categories and relative Hopf objects, J. Pure Appl. Algebra, 228(2024), 107607.
[15] A. Banerjee and S. Kour, Finite duals in Grothendieck categories and coalgebra objects, High. Struct., 8(2024), 224-243.
[14 S. Gupta, D. Ahuja and S. Kour, Image of linear $K$-derivations and linear $KE$-derivations of $K[x_1,x_2,x_3,x_4]$, Comm. Algebra, 51(2023), 5091-5106.
[13] H. Rewri and S. Kour, Isotropy group of non-simple derivations of $K[x,y]$, Comm. Algebra, 51(2023), 5065-5083.
[12] S. Gupta and S. Kour, On generalized cyclotomic derivations, Proc. Indian Acad. Sci. Math. Sci, 133 (2023), 1.
[11] A. Dey and S. Kour, On the module of derivations of rings of invariants of $k[x,y]$ under the action of certain Dihedral groups, J. Algebra Appl., 22 (2023), 2350033.
[10] A. Banerjee and S. Kour, On measuring of algebras over operad and homology theories, Algebr. Geom. Topol., 22(2022), 1113-1158.
[9] A. Parkash and S. Kour, On Cohen's theorem for modules, Indian J. Pure Appl. Math., 52(2021), 869-871.
[8] S. Kour, On the kernels of higher $R$-derivations of $R[x_1,\ldots, x_n]$, Algebra Discrete Math., 32(2021), 236-240.
[7] A. Banerjee and S. Kour, $(A,\delta)$-modules, Hochschild homology and Higher derivations, Ann. Mat. Pura Appl., 198 (2019), 1781–1802.
[6] S. Kour, On nth class preserving automorphisms of n-isoclinism family, Proc. Indian Acad. Sci. Math. Sci, 129 (2019), 8.
[5] S. Kour, Simple derivations on tensor product of polynomial algebras, J. Algebra Appl. , 16(2017), 1750083.
[4] S. Kour and V. Sharma, On Equality of Certain Automorphism Groups, Comm. Algebra, 45 (2017), 552–560.
[3] S. Kour, A class of simple derivations of k[x,y], Comm. Algebra, 42 (2014), 4066-4083.
[2] S. Kour and A. K. Maloo, Simplicity of some derivations of k[x,y], Comm. Algebra, 41 (2013), 1417-1431.
[1] S. Kour, Some simple derivations of k[x,y], Comm. Algebra, 40 (2012), 4100- 4110.