Publications:

[21]  H. Rewri and  S. Kour,   Isotropy group of Lotka-Volterra derivations ,  J. Pure Appl. Algebra,  (accepted  2025).

[20]  A. Banerjee and S. Kour, Entwined comodules and contramodules over coalgebras with several objects: Frobenius, separability and Maschke theorems,  J. Algebra,  683(2025), 533-575.

[19]  D. Ahuja and S. Kour,  Differential torsion theories on Eilenberg-Moore categories of monads,  J. Pure Appl. Algebra,  229(2025), 107910.

[18]  A. Banerjee and S. Kour, Measurings of Hopf algebroids and morphisms in cyclic (co)homology theories, Advances in  Mathematics, 442(2024), 109581

[17]  D. Ahuja and S. Kour,  Grothendieck's Vanishing and Non-vanishing Theorems in abstract module category, Appl. Categ. Structures, 32(2024), 9.

[16]  M. Balodi, A. Banerjee and S. Kour,  Comodule theories in Grothendieck categories and relative Hopf objects,  J. Pure Appl. Algebra, 228(2024), 107607.

[15] A. Banerjee and S. Kour, Finite duals in Grothendieck categories and coalgebra objects, High. Struct., 8(2024), 224-243.

[14  S. Gupta, D. Ahuja and  S. Kour, Image of linear $K$-derivations and linear $KE$-derivations of  $K[x_1,x_2,x_3,x_4]$, Comm. Algebra, 51(2023), 5091-5106.

[13]  H. Rewri and  S. Kour,   Isotropy group of non-simple derivations of  $K[x,y]$, Comm. Algebra, 51(2023), 5065-5083.

[12]  S. Gupta and  S. Kour,  On generalized cyclotomic derivationsProc. Indian Acad. Sci. Math. Sci, 133 (2023), 1.

[11]  A. Dey and S. Kour, On the module of derivations of rings of invariants of $k[x,y]$ under the action of certain Dihedral groups, J. Algebra Appl., 22 (2023), 2350033.

[10]  A. Banerjee and S. Kour,  On measuring of algebras over operad and homology theories, Algebr. Geom. Topol., 22(2022), 1113-1158.

[9]  A. Parkash and  S. Kour, On Cohen's theorem for modules, Indian J. Pure Appl. Math.52(2021), 869-871.

[8]  S. Kour, On the kernels of higher $R$-derivations of $R[x_1,\ldots, x_n]$, Algebra Discrete Math., 32(2021),  236-240.

[7] A. Banerjee and S. Kour,  $(A,\delta)$-modules, Hochschild homology and Higher derivations,  Ann. Mat. Pura  Appl., 198 (2019), 1781–1802.

[6]  S. Kour, On  nth class preserving automorphisms of n-isoclinism family, Proc. Indian Acad. Sci. Math. Sci, 129 (2019), 8.

[5]  S. Kour, Simple derivations on tensor product of polynomial algebras,  J. Algebra Appl. , 16(2017),  1750083.

[4]  S. Kour and V. Sharma, On Equality of Certain Automorphism Groups, Comm. Algebra, 45 (2017), 552–560.

[3]  S. Kour, A class of simple derivations of k[x,y], Comm. Algebra, 42 (2014), 4066-4083.

[2]  S. Kour and A. K. Maloo, Simplicity of some derivations of k[x,y], Comm. Algebra, 41 (2013), 1417-1431.

[1]  S. Kour, Some simple derivations of k[x,y], Comm. Algebra, 40 (2012), 4100- 4110.