28) The [3]Dendralene Motif as an Entry into Nazarov Cyclizations by Silylium-Ion Initiation

Rej, S.; Klare, H. F. T.; Oestreich, M.*  Org. Lett. 2023, 25, 426–431.

27) Regio-Selective Transition-Metal-Free C(sp2)‒H Borylation: A Subject of Practical and Ongoing Interest in Synthetic Organic Chemistry

Rej, S.;* Chatani, N.* Angew. Chem. Int. Ed. 2022, 61, e202209539.

26) Silylium-Ion-Promoted Hydrosilylation of Aryl-Substituted Allenes: Interception by an Intramolecular Friedel‒Crafts Allylation

Rej, S.; Klare, H. F. T.; Oestreich, M.* Org. Lett. 2022, 24, 1346–1350.

25) Aluminium Complexes: Next-Generation Catalysts in Selective Hydroboration

Das, A.;* Rej, S.;* Panda, T. K.* Dalt. Trans. 2022, 51, 3027-3040.

24)  Origin of the Enhanced Reactivity in the ortho C–H Borylation of Benzaldehydes with BBr3

Yamazaki, K.; Rej, S.;  Ano, Y.; Chatani, N.* Org. Lett., 2022, 24, 213–217.

23) Overview of Regioselective and Stereoselective Catalytic Hydroboration of Alkynes

Rej, S.;* Das, A.;* Panda, T. K.* Adv. Synth. Catal. 2021, 363, 4818−4840. 

22) An Unusual Perpendicular Metallacycle Intermediate is the Origin of Branch Selectivity in the Rh (II)-Catalyzed C–H Alkylation of Aryl Sulfonamides with Vinylsilanes

Yamazaki, K.; Rej, S.;  Ano, Y.; Chatani, N.* Organometallics, 2021, 40, 3935‒3942. 

21). Pyrimidine-directed metal-free C–H borylation of 2-pyrimidylanilines: a useful process for tetra-coordinated triarylborane synthesis

Rej, S.; Das, A.; Chatani, N.* Chem. Sci., 2021, 12, 11447−11454.

20) Mechanism and Origins of Regiochemical Control in Rh(III)-Catalyzed Oxidative C-H Alkenylation and Coupling Sequence of Unprotected 1-Naphtylamines with α,β-Unsaturated Esters. 

Yamazaki, K.; Rej, S.; Ano, Y.; Chatani, N.* Organometallics, 2021, 40, 1371-1378. 

19) Effect of Sulfonamide and Carboxamide Ligands on the Structural Diversity of Bimetallic RhII −RhII Cores: Exploring the Catalytic Activity of These Newly Synthesized Rh2 Complexes. 

Rej, S.; Chatani, N.* Inorg. Chem. 2021, 60, 3534−3538.

18) Transient Imine as a Directing Group for the Metal-free ortho-C-H Borylation of Benzaldehydes. 

Rej, S.; Chatani, N.* J. Am. Chem. Soc., 2021, 143, 2920−2929.

17) Strategic Evolution in Transition Metal-Catalyzed Directed C-H Bond Activation and Future Directions.

Rej, S.; Das, A.; Chatani, N.* Coord. Chem. Rev., 2020, 431, 213683.

16) Rh(I)-Catalyzed Addition of the ortho C‒H Bond in Aryl Sulfonamides to Maleimides.

Ohara, N.; Rej, S.; Chatani, N.* Chem. Lett. 2020, 49, 1053‒1057.

15) Rh(III)‐catalyzed Double Dehydrogenative Coupling of Free 1‐Naphthylamines with α,β‐Unsaturated Esters.

Rej, S.; Chatani, N.* Chem. Eur. J., 2020, 26, 11093‒11098.

14) Bidentate Directing Groups: An Efficient Tool in C–H Bond Functionalization Chemistry for the Expedient Construction of C–C Bonds.

Rej, S.; Ano, Y.; Chatani, N.* Chem. Rev. 2020, 120, 1788‒1887 

13) Rh(II)-catalyzed branch-selective C–H alkylation of aryl sulfonamides with vinylsilanes

Rej, S.; Chatani, N. Chem. Sci., 2019, DOI. 10.1039/C9SC04308J

12) Rhodium(I)-Catalyzed Mono-Selective C-H Alkylation of Benzenesulfonamides with Terminal Alkenes

Rej, S.; Chatani, N. Chem. Commun., 2019, 55, 10503‒10506

11) Ruthenium(II)-Catalyzed Alkylation of C‒H Bonds in Aromatic Amides with Vinylsilanes

Wang, C.; Rej, S.; Chatani, N. Chem. Lett., 2019, 48, 1185‒1187

10) Rhodium-Catalyzed Alkylation of C‒H Bonds in Aromatic Amides with Unactivated 1-Alkenes and Styrenes: The Possible Generation of Carbene Intermediates from Alkenes

Yamaguchi, T.; Natsui, S.; Shibata, K.; Yamazaki, K.; Rej, S.; Ano, Y.; Chatani, N. Chem. Eur. J., 2019, 25, 6915‒6919.

9) Rh-Catalyzed Removable Directing Group Assisted sp2 or sp3-C-H Bond Functionalization.

Rej, S.; Chatani, N. Angew. Chem., Int. Ed., 2019, 58, 8304‒8329.

8) Rhodium(I)-Catalyzed C8-Alkylation of 1-Naphthylamide Derivatives with Alkenes through a Bidentate Picolinamide Chelation System

Rej, S.; Chatani, N. ACS Catal., 2018, 8, 6699‒6706.

7) Organosilicon Reducing Reagents for Stereoselective Formations of Silyl Enol Ethers from α-Halo Carbonyl Compounds

Paramanik, S.; Rej, S.; Kando, S.; Tsurugi, H.; Mashima, K. J. Org. Chem., 2018, 83, 2409‒2417.

6) Multiply-bonded dinuclear complexes of early-transition metals as minimum entities of metal cluster catalysts

Rej, S.; Tsurugi, H.; Mashima, K. Coordination chemistry reviews, 2018, 355, 223‒239.

5) Dehalogenation of vicinal dihalo compounds by 1,1’-bis(trimethylsilyl)-1H,1’H-4,4’-bipyridinylidene for giving alkenes and alkynes in a salt-free manner

Rej, S.; Pramanik, S. Tsurugi, H.; Mashima, K. Chem. Commun., 2017, 53, 13157‒13160.

4) Mixed Ligated Tris(amidinate)dimolybdenum Complexes as Catalysts for Radical Addition of CCl4 to 1‑Hexene: Leaving Ligand Lability Controls Catalyst Activity.

Rej, S.; Majumder, M.; Kando, S.; Sugino, Y.; Tsurugi, H.; Mashima, K. Inorg. Chem. 2017, 56, 634-644.

3) Group 1 and group 2 metal complexes supported by bidentate bulky iminopyrrolyl ligand: synthesis, structural diversity, and ε-caprolactone polymerization study.

Kottalanka, R.K.; Harinath, A.; Rej, S.; Panda, T. K. Dalton Trans. 2015, 44, 19865-19879.

2) Syntheses and solid state structures of zinc (II) complexes with Bi-dentate N-(Aryl)imino-acenapthenone (Ar-BIAO) ligands.

Anga, S.; Rej, S.; Naktode, K.; Pal, T.; Panda, T. K. J. Chem. Sci. 2015, 127, 103-113.

1) Modelling of Transition State in Grignard Reaction of Rigid N-(Aryl)imino-Acenapthenone (Ar-BIAO): A Combined Experimental and Computational Study.

Anga, S.; Dasgupta, S.; Rej, S.; Mallik, B. S.; Panda, T. K. Australian J. Chem. 2014, 68, 931-938.