The current categorisation is that a supercharger is a form of forced induction that is mechanically powered (usually by a belt from the engine's crankshaft), as opposed to a turbocharger, which is powered by the kinetic energy of the exhaust gases.[1] However, up until the mid-20th century, a turbocharger was called a "turbosupercharger" and was considered a type of supercharger.[2]

The first supercharged engine was built in 1878,[3] with usage in aircraft engines beginning in the 1910s and usage in car engines beginning in the 1920s. In piston engines used by aircraft, supercharging was often used to compensate for the lower air density at high altitudes. Supercharging is less commonly used in the 21st century, as manufacturers have shifted to turbochargers to reduce fuel consumption and increase power outputs.


Super Charger Download


Download 🔥 https://tiurll.com/2y3KXf 🔥



There are two main families of superchargers defined according to the method of gas transfer: positive displacement and dynamic superchargers. Positive displacement superchargers deliver an almost constant level of boost pressure increase at all engine speeds, while dynamic superchargers cause the boost pressure to rise exponentially with engine speed (above a certain threshold).[4] Another family of supercharger, albeit rarely used, is the pressure wave supercharger.

Positive displacement pumps deliver a nearly fixed volume of air per revolution of the compressor (except for leakage, which typically has a reduced effect at higher engine speeds). The most common type of positive-displacement superchargers is the Roots-type supercharger. Other types include the rotary-screw, sliding vane and scroll-type superchargers.

Fuels with a higher octane rating are better able to resist autoignition and detonation. As a result, the amount of boost supplied by the superchargers could be increased, resulting in an increase in engine output. The development of 100-octane aviation fuel, pioneered in the USA in the 1930s, enabled the use of higher boost pressures to be used on high-performance aviation engines and was used to vastly increase the power output for several speed record airplanes.

One disadvantage of forced induction (i.e. supercharging or turbocharging) is that compressing the intake air increases its temperature. For an internal combustion engine, the temperature of the intake air becomes a limiting factor in engine performance. Extreme temperatures can cause pre-ignition or knocking, which reduces performance and can cause engine damage. The risk of pre-ignition/knocking increases with higher ambient air temperatures and higher boost levels.

Turbocharged engines use energy from the exhaust gas that would normally be wasted, compared with a supercharger which mechanically draws power from the engine. Therefore turbocharged engines usually produce more power and better fuel economy than supercharged engines. However, turbochargers can cause turbo lag (especially at lower RPM), where the exhaust gas flow is initially insufficient to spin the turbocharger and achieve the desired boost level, thus leading to a delay in the throttle response. For this reason, supercharged engines are common in applications where throttle response is a key concern, such as drag racing and tractor pulling competitions.

The majority of aircraft engines used during World War II used mechanically driven superchargers because they had some significant manufacturing advantages over turbochargers. However, the benefit to the operational range was given a much higher priority to American aircraft because of a less predictable requirement on the operational range and having to travel far from their home bases. Consequently, turbochargers were mainly employed in American aircraft engines such as the Allison V-1710 and the Pratt & Whitney R-2800, which were comparably heavier when turbocharged, and required additional ducting of expensive high-temperature metal alloys in the gas turbine and a pre-turbine section of the exhaust system. The size of the ducting alone was a serious design consideration. For example, both the F4U Corsair and the P-47 Thunderbolt used the same radial engine, but the large barrel-shaped fuselage of the turbocharged P-47 was needed because of the amount of ducting to and from the turbocharger in the rear of the aircraft. The F4U used a two-stage inter-cooled supercharger with a more compact layout. Nonetheless, turbochargers were useful in high-altitude bombers and some fighter aircraft due to the increased high altitude performance and range.

In the 1985 and 1986 World Rally Championships, Lancia ran the Delta S4, which incorporated both a belt-driven supercharger and exhaust-driven turbocharger. The design used a complex series of bypass valves in the induction and exhaust systems as well as an electromagnetic clutch so that, at low engine speeds, a boost was derived from the supercharger. In the middle of the rev range, a boost was derived from both systems, while at the highest revs the system disconnected the drive from the supercharger and isolated the associated ducting.[13] This was done in an attempt to exploit the advantages of each of the charging systems while removing the disadvantages. In turn, this approach brought greater complexity and affected the car's reliability in WRC events, as well as increasing the weight of engine ancillaries in the finished design.

In 1849, G. Jones of Birmingham, England began manufacturing a lobe pump compressor to provide ventilation for coal mines.[14] In 1860, the Roots Blower Company (founded by brothers Philander and Francis Marion Roots) in the United States patented the design for an air mover for use in blast furnaces and other industrial applications. This air mover and Birmingham's ventilation compressor both used designs similar to that of the later Roots-type superchargers.

Also in 1878, Scottish engineer Dugald Clerk designed the first supercharger which was used with an engine.[16] This supercharger was used with a two-stroke gas engine.[17] Gottlieb Daimler received a German patent for supercharging an internal combustion engine in 1885.[18] Louis Renault patented a centrifugal supercharger in France in 1902.[19][20]

The world's first series-produced cars[21] with superchargers were the 1.6 litre Mercedes 6/25 hp and 2.6 litre Mercedes 10/40 hp, both of which began production in 1923.[22][23][24] They were marketed as Kompressor models, a term which was used for various models until 2012.

In the 21st century, supercharged production car engines have become less common, as manufacturers have shifted to turbocharging to achieve higher fuel economy and power outputs. For example, Mercedes-Benz's Kompressor engines of the early 2000s (such as the C 230 Kompressor straight-four, C 32 AMG V6, and CL 55 AMG V8 engines) were replaced around 2010 by turbocharged engines in models such as the C 250 and CL 65 AMG models. However, there are exceptions, such as the Audi 3.0 TFSI supercharged V6 (introduced in 2009) and the Jaguar AJ-V8 supercharged V8 (upgraded to the Gen III version in 2009).

In the 1930s, two-speed drives were developed for superchargers for aero engines providing more flexible aircraft operation. The arrangement also entailed more complexity of manufacturing and maintenance. The gears connected the supercharger to the engine using a system of hydraulic clutches, which were initially manually engaged or disengaged by the pilot with a control in the cockpit. At low altitudes, the low-speed gear would be used, to prevent excessive boost levels. At higher altitudes, the supercharger could be switched to a higher gear to compensate for the reduced intake air density. In the Battle of Britain the Spitfire and Hurricane planes powered by the Rolls-Royce Merlin engine were equipped largely with single-stage and single-speed superchargers.[28][29]

In 1942, two-speed two-stage supercharging with aftercooling was applied to the Rolls Royce Merlin 61 aero engine. The improved performance allowed the aircraft they powered to maintain a crucial advantage over the German aircraft they opposed throughout World War II, despite the German engines being significantly larger in displacement.[30][29] Two-stage superchargers were also always two-speed. After the air was compressed in the low-pressure stage, the air flowed through a heat exchanger ("intercooler") where it was cooled before being compressed again by the high-pressure stage and then possibly also aftercooled in another heat exchanger.

Since a supercharger is usually designed to produce a given amount of boost at high altitudes (where the air density is lower), the supercharger is often oversized for low altitude. To prevent excessive boost levels, it is important to monitor the intake manifold pressure at low altitude. As the aircraft climbs and the air density drops, the throttle can be progressively opened to obtain the maximum safe power level for a given altitude. The altitude at which the throttle reaches full open and the engine is still producing full rated power is known as the critical altitude. Above the critical altitude, engine power output will reduce as the supercharger can no longer fully compensate for the decreasing air density.

Another issue encountered at low altitudes (such as at ground level) is that the intake air is warmer than at high altitude. Warmer air reduces the threshold at which engine knocking can occur, especially in supercharged or turbocharged engines. Methods to cool the intake air at ground level include intercoolers/aftercoolers, anti-detonant injection, two-speed superchargers and two-stage superchargers.

In supercharged engines which use a carburetor, a partially-open throttle reduces the air pressure within the carburetor. In cold conditions, this low pressure air can cause ice to form at the throttle plate. Significant quantities of ice can cause engine failure, even with the engine operating at full rated power. 2351a5e196

free bitcoin cash app download

how to download and install dyned courseware

ethiopian old music 1990 mp3 download audio

bdvenlinea

running music