McClelland, J. L., Botvinick, M. M., Noelle, D. C., Plaut, D. C., Rogers, T.T., Seidenberg, M. S., and Smith, L. B. (2010). Letting structure emerge: connectionist and dynamical systems approaches to understanding cognition. Trends in Cognitive Sciences, 14, 348-356.
McClelland, J. L. (2010). Emergence in cognitive science. Topics in Cognitive Science 2. 751-770.
Hassabis, D., Kumaran, D., Summerfield, C., and Botvinick, M. (2017). Neuroscience-inspired artificial intelligence. Neuron, 95(2), 245-258.Â
Guerguiev, J., Lillicrap, T. P., & Richards, B. A. (2017). Towards deep learning with segregated dendrites. Elife, 6, e22901.
Nicola, W., & Clopath, C. (2017). Supervised learning in spiking neural networks with FORCE training. Nature Communications, 8(1), 1-15.
Song, H. F., Yang, G. R., & Wang, X. J. (2016). Training excitatory-inhibitory recurrent neural networks for cognitive tasks: a simple and flexible framework. PLoS Computational Biology, 12(2), e1004792.
Kim, R., Li, Y., & Sejnowski, T. J. (2019). Simple framework for constructing functional spiking recurrent neural networks. Proceedings of the National Academy of Sciences, 116(45), 22811-22820.
Spoerer, C. J., Kietzmann, T. C., Mehrer, J., Charest, I., and Kriegeskorte, N. (2020). Recurrent neural networks can explain flexible trading of speed and accuracy in biological vision. PLoS Computational Biology, 16(10), e1008215.
Richards, B. A., Lillicrap, T. P., Beaudoin, P., Bengio, Y., Bogacz, R., Christensen, A., ... & Kording, K. P. (2019). A deep learning framework for neuroscience. Nature Neuroscience, 22(11), 1761-1770.
Kriegeskorte, N., & Douglas, P. K. (2018). Cognitive computational neuroscience. Nature Neuroscience, 21(9), 1148-1160.
Van Gerven, M. (2017). Computational foundations of natural intelligence. Frontiers in Computational Neuroscience, 112.
Marblestone, A. H., Wayne, G., & Kording, K. P. (2016). Toward an integration of deep learning and neuroscience. Frontiers in Computational Neuroscience, 94.
Hawkins, J., & Blakeslee, S. (2007). On intelligence: How a new understanding of the brain will lead to the creation of truly intelligent machines. Macmillan.
Seung, S. (2012). Connectome: How the brain's wiring makes us who we are. HMH.
Rumelhart, D. E., McClelland, J. L., and the PDP research group. (1986). Parallel distributed processing: Explorations in the microstructure of cognition. Volume I. Cambridge, MA: MIT Press.
McClelland, J. L., Rumelhart, D. E., and the PDP research group. (1986). Parallel distributed processing: Explorations in the microstructure of cognition. Volume II. Cambridge, MA: MIT Press.
Rogers, T. T., and McClelland, J. L. (2004). Semantic Cognition: A Parallel Distributed Processing Approach. Cambridge, MA: MIT Press.
McClelland, J. L., Mickey, K., Hansen, S., Yuan, X., & Lu, Q. (2016). A Parallel-Distributed Processing Approach to Mathematical Cognition. Manuscript, Stanford University, February 18, 2016.
Hawkins, J. (2022). A Thousand Brains: A New Theory of Intelligence. Basic Books.