I work in the theoretical and computational aspect of modular forms and its generalizations. Currently, I am a postdoctoral fellow in the School of Mathematical Sciences, University of Nottingham, working with Dr. Fredrik Stromberg. I completed my Ph. D. from NISER Bhubaneswar under the supervision of Dr. Jaban Meher.  

Brief CV 

Education:  


1. Ph. D., June 2020, National Institute of science Education and Research, Bhubaneswar, India.
2. Master of Science,  2015, Indian Institute of Technology, Guwahati, India.
3Bachelor of Science,  2013,  Banaras Hindu University, Varanasi, India.

Postdoctoral Experience:


1. Research Fellow, October 2022--present, University of Nottingham, Nottingham, United Kingdom.
2. Research Associate, July 2022-- September 2022, Indian Institute of Technology,  Gandhinagar, India.
3. Postdoctoral Fellow, July 2021-- July 2022, Indian Institute of Technology Bombay, Mumbai, India.
4. Research Associate, August 2020--June 2021, Indian Institute of Science Education and Research, Bhopal, India

Publications:

R. Nandi, S. K. Singh and P. Tiwari, On sign changes of Fourier coefficients of Hermitian cusp form of degree twoto appear in Ramanujan J.
A. Kumar,  M. Kumari, P. Moree and S. K. Singh, Ramanujan-style congruences for prime level, Math. Z., 303, 19 (2023).
J. Meher, S. K. Singh, Structure of Hermitian modular forms modulo p and some applications, Res. Number Theory 7 (2021), Paper No. 52, 18 pp.
J. Meher, S. K. Singh,  Mod p modular forms and simple congruences, Ramanujan J. 56 (2021), 821--838.
Sumukha S, S. K. Singh, Rankin-Cohen brackets on Hermitian Jacobi forms and the adjoint of some linear maps, Funct. Approx. Comment. Math. 65 (2021), 61--72.
M. Kumari, S. K. Singh,  On the parity of the Fourier coefficients of the Hauptmoduln $j_N(z)$ and $j_N^+(z)$, Acta Arith. 188 (2019), 171-182. 
J. Meher,  S. K. Singh,  Congruences in Hermitian Jacobi and Hermitian modular forms, Forum Math.,  32  (2020),  501–523.

Preprints/ In preparation:


  1. . S. K. Singh, Weight of Hermitian modular forms in the mod $p$ kernel of theta operator, preprint.