Zhang Z, Bandivadekar PR, Gaunt AJ, Ahn SH, Barkman TJ, Stull F. (2025) Ancestral evolution of oxidase activity in a class of (S)-nicotine and (S)-6-hydroxynicotine degrading flavoenzymes. J. Biol. Chem. 301:110360. doi: 10.1016/j.jbc.2025.110360
Akram J, Budagavi T, Zhang Z, Fowler M, Gaunt AJ, Barkman TJ, Stull F. (2025) Dehydrogenases in the Flavoprotein Amine Oxidoreductase Superfamily. Biochemistry. 64, 13, 2834-2847. doi: 10.1021/acs.biochem.5c00129.
Zhang Z, Freeland K, Stull F. (2025) Role of glutamate 292 and lysine 331 in catalysis for the flavoenzyme (S)-6-hydroxynicotine oxidase from Shinella sp. HZN7. Arch. Biochem. Biophys. 771: 110492. doi: 10.1016/j.abb.2025.110492
Huang Z, Ghosh K, Stull F, Horowitz S. (2025) G-quadruplexes catalyze protein folding by reshaping the energetic landscape. Proc. Natl. Acad. Sci. 112:e2414045122. doi: 10.1073/pnas.2414045122
Hu H, Xu Z, Zhang Z, Song P, Stull F, Xu P, Tang H. (2024) Rational design of a flavoenzyme for aerobic nicotine catabolism. mBio. 15:e0205024. doi: 10.1128/mbio.02050-24
Shearer HL, Currie MJ, Agnew HN, Trappetti C, Stull F, Pace PE, Paton JC, Dobson RCJ, Dickerhof N. (2024) Hypothiocyanous acid reductase is critical for host colonization and infection by Streptococcus pneumoniae. J. Biol. Chem. 300:107282. doi: 10.1016/j.jbc.2024.107282
Delavari N, Zhang Z, Stull F. (2024) Rapid reaction studies on the chemistry of flavin oxidation in urocanate reductase. J. Biol. Chem. 300:105689. doi: 10.1016/j.jbc.2024.105689
Dulchavsky M, Mitra R, Wu K, Li J, Boer K, Liu X, Zhang Z, Vasquez C, Clark CT, Funckes K, Shankar K, Bonnet-Zahedi S, Siddiq M, Sepulveda Y, Suhandynata RT, Momper JD, Calabrese AN, George O, Stull F, Bardwell JCA. (2023) Directed evolution unlocks oxygen reactivity for a nicotine-degrading flavoenzyme. Nat. Chem. Biol. 19, 1406-1414. doi: 10.1038/s41589-023-01426-y
Javanshad R, Taylor CJ, Delavari N, Barkman TJ, Stull F, Venter AR. (2023) Analysis of histidine-tagged recombinant proteins from nickel and copper coated surfaces by direct electrospray ionization and desorption electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. doi: 10.1002/rcm.9516
Mumby EJ, Willoughby Jr JA, Vasquez C, Delavari N, Zhang Z, Clark CT, Stull F. (2022) Binding Interface and Electron Transfer Between Nicotine Oxidoreductase and Its Cytochrome c Electron Acceptor. Biochemistry 61, 2182-2187. doi: 10.1021/acs.biochem.2c00472
Choudhary V, Wu K, Zhang Z, Dulchavsky M, Barkman T, Bardwell JCA, Stull F. (2022) The enzyme pseudooxynicotine amine oxidase from Pseudomonas putida S16 is not an oxidase, but a dehydrogenase. J. Biol. Chem. 298:102251. doi: 10.1016/j.jbc.2022.102251
Meredith JD, Chapman I, Ulrich K, Sebastian C, Stull F, Gray MJ. (2022) Escherichia coli RclA is a highly active hypothiocyanite reductase. Proc. Natl. Acad. Sci. 119: e2119368119. doi: 10.1073/pnas.2119368119
Matthews A, Schonfelder J, Lagies S, Schleicher E, Kammerer B, Ellis HR, Stull F, Teufel R. (2022) Bacterial flavoprotein monooxygenase YxeK salvages toxic S-(2-succino)-adducts via oxygenolytic C-S bond cleavage. FEBS J. 289, 787-807. doi: 10.1111/febs.16193
Bou-Nader C, Stull FW, Pecqueur L, Simon P, Guerineau V, Royant A, Fontecave M, Lombard M, Palfey BA, Hamdane D. (2021) An enzymatic activation of formaldehyde for nucleotide methylation. Nat. Commun. 12:4542. doi: 10.1038/s41467-021-24756-8
Dulchavsky M, Clark CT, Bardwell JCA, Stull F. (2021) A cytochrome c is the natural electron acceptor for nicotine oxidoreductase. Nat. Chem. Biol. 17, 344-350. doi: 10.1038/s41589-020-00712-3
Matthews A, Saleem-Batcha R, Sanders JN, Stull F, Houk KN, Teufel R. (2020) Aminoperoxide adducts expand the catalytic repertoire of flavin monooxygenases. Nat. Chem. Biol. 16, 556-563. doi: 10.1038/s41589-020-0476-2
Meinen BA, Gadkari VV, Stull F, Ruotolo BT, Bardwell JCA. (2019) SERF engages in a fuzzy complex that accelerates primary nucleation of amyloid proteins. Proc. Nat. Acad. Sci. 116, 23040–23049. doi: 10.1073/pnas.1913316116
Wu K, Stull F, Lee C, Bardwell JCA. (2019) Protein folding while chaperone bound is dependent on weak interactions. Nat. Commun. Oct 23;10(1):4833. doi: 10.1038/s41467-019-12774-6. doi: 10.1038/s41467-019-12774-6
Stull F, Hipp H, Stockbridge R, Bardwell JCA. (2018) Chloride concentrations surge to proteotoxic levels during acid stress. Nat. Chem. Biol. 14, 1051-1058. doi: 10.1038/s41589-018-0143-z
Stull F, Betton JM, Bardwell JCA. (2018) Periplasmic chaperones and prolyl isomerases. EcoSal Plus. doi: 10.1128/ecosalplus.ESP-0005-2018.
Saleem-Batcha R, Stull F, Sanders JN, Moore BS, Palfey BA, Houk KN, Teufel R. (2018) Enzymatic control of dioxygen binding and functionalization of the flavin cofactor. Proc. Nat. Acad. Sci. 115, 4904-4914. doi: 10.1073/pnas.1801189115
Stull F, Bardwell JCA. (2018) Folding against the wind. Nat. Chem. Biol. 14, 329-330. doi: 10.1038/s41589-018-0016-5
Salmon L, Stull F, Sayle S, Cato C, Akgul S, Foit L, Ahlstrom LS, Eisenmesser EZ, Al-Hashimi HM, Bardwell JCA, Horowitz S. (2018) The Mechanism of HdeA Unfolding and Chaperone Activation. J. Mol Biol. 430, 33-40. doi: 10.1016/j.jmb.2017.11.002
Horowitz S, Koldewey P, Stull F, Bardwell JC. (2018) Folding while bound to chaperones. Curr. Opin. Struct. Biol. 48, 1-5. doi: 10.1016/j.sbi.2017.06.009
Koldewey P, Stull F, Horowitz S, Martin R, Bardwell JC. (2016) Forces Driving Chaperone Action. Cell. 166, 369-379. doi: 10.1016/j.cell.2016.05.054
Stull FW, Bernard SM, Sapra A, Smith JL, Zuiderweg ER, Palfey BA. (2016) Deprotonations in the Reaction of Flavin-Dependent Thymidylate Synthase. Biochemistry 55, 3261-3269. doi: 10.1021/acs.biochem.6b00510
Stull F, Koldewey P, Humes JR, Radford SE, Bardwell JC. (2016) Substrate protein folds while it is bound to the ATP-independent chaperone Spy. Nat. Struct. Mol. Biol. 23, 53-58. doi: 10.1038/nsmb.3133
Teufel R, Stull F, Meehan MJ, Michaudel Q, Dorrestein PC, Palfey B, Moore BS. (2015) Biochemical Establishment and Characterization of EncM’s Flavin-N5-oxide Cofactor. J. Am. Chem. Soc. 137, 8078-8085. doi: 10.1021/jacs.5b03983
Nikolova EN, Stull F, Al-Hashimi HM. (2014) Guanosine to inosine substitution leads to large increases in the population of a transient GC Hoogsteen base pair. Biochemistry 53, 7145-7147. doi: 10.1021/bi5011909
Teufel R, Miyanaga A, Michaudel Q, Stull F, Louie G, Noel JP, Baran PS, Palfey B, Moore BS. (2013) Flavin-mediated dual oxidation controls an enzymatic Favorskii-type rearrangement. Nature 503, 552-556. doi: 10.1038/nature12643
Stull FW and Martin DF. (2009) Comparative ease of separation of mixtures of selected nuisance anions (nitrate, nitrite, sulfate, phosphate) using Octolig®. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. 14, 1545-1550. doi: 10.1080/10934520903263454
Martin DF, Aguinaldo JS, Kondis NP, Stull FW, O'Donnell LF, Martin BB, Alldredge RL. (2008) Comparison of effectiveness of removal of nuisance anions by metalloligs, metal derivatives of Octolig®. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. 43, 1296-1302. doi: 10.1080/10934520802177938