Last updated: 25.01.11
1 Selvam, K. et al. Elf1 promotes transcription-coupled repair in yeast by using its C-terminal domain to bind TFIIH. Nat Commun 15, 6223, doi:10.1038/s41467-024-50539-y (2024).
2 Sarsam, R. D. et al. Elf1 promotes Rad26’s interaction with lesion-arrested Pol II for transcription-coupled repair. Proceedings of the National Academy of Sciences 121, e2314245121 (2024).
3 Aiyer, S. et al. Overcoming resolution attenuation during tilted cryo-EM data collection. Nature Communications 15, 389 (2024).
4 Ivanov, I. et al. Molecular mechanism of RAD26-assisted rescue of stalled RNA polymerase II in transcription-coupled repair. Biophysical Journal 123, 139a-140a (2024).
5 Gao, S., Hou, P., Oh, J., Wang, D. & Greenberg, M. M. Molecular Mechanism of RNA Polymerase II Transcriptional Mutagenesis by the Epimerizable DNA Lesion, Fapy· dG. Journal of the American Chemical Society (2024).
6 Oh, J. et al. A unified Watson-Crick geometry drives transcription of six-letter expanded DNA alphabets by E. coli RNA polymerase. Nature Communications 14, 8219 (2023).
7 Oh, J. et al. Structural basis of transcription recognition of a hydrophobic unnatural base pair by T7 RNA polymerase. Nat Commun 14, 195, doi:10.1038/s41467-022-35755-8 (2023).
8 Oh, J. et al. RNA polymerase II trapped on a molecular treadmill: Structural basis of persistent transcriptional arrest by a minor groove DNA binder. Proc Natl Acad Sci U S A 119, e2114065119, doi:10.1073/pnas.2114065119 (2022).
9 Oh, J., Xu, J., Chong, J. & Wang, D. Molecular basis of transcriptional pausing, stalling, and transcription-coupled repair initiation. Biochim Biophys Acta Gene Regul Mech 1864, 194659, doi:10.1016/j.bbagrm.2020.194659 (2021).
10 Oh, J. et al. Transcriptional processing of an unnatural base pair by eukaryotic RNA polymerase II. Nat Chem Biol 17, 906-914, doi:10.1038/s41589-021-00817-3 (2021).
11 Yuan, S. et al. Clofazimine broadly inhibits coronaviruses including SARS-CoV-2. Nature 593, 418-423, doi:10.1038/s41586-021-03431-4 (2021).
12 Xu, J., Oh, J., Chong, J., Xu, L. & Wang, D. in RNA Polymerases as Molecular Motors 25-45 (2021).
13 Yan, C. et al. Mechanism of Rad26-assisted rescue of stalled RNA polymerase II in transcription-coupled repair. Nat Commun 12, 7001, doi:10.1038/s41467-021-27295-4 (2021).
14 Di, L. et al. RNA sequencing by direct tagmentation of RNA/DNA hybrids. Proc Natl Acad Sci U S A 117, 2886-2893, doi:10.1073/pnas.1919800117 (2020).
15 Oh, J. et al. RNA polymerase II stalls on oxidative DNA damage via a torsion-latch mechanism involving lone pair-pi and CH-pi interactions. Proc Natl Acad Sci U S A 117, 9338-9348, doi:10.1073/pnas.1919904117 (2020).
16 Xu, J. et al. Cockayne syndrome B protein acts as an ATP-dependent processivity factor that helps RNA polymerase II overcome nucleosome barriers. Proceedings of the National Academy of Sciences 117, 25486-25493 (2020).
17 Oh, J., Xu, J., Chong, J. & Wang, D. Structural and biochemical analysis of DNA lesion-induced RNA polymerase II arrest. Methods 159-160, 29-34, doi:10.1016/j.ymeth.2019.02.019 (2019).
18 Lahiri, I. et al. 3.1 Å structure of yeast RNA polymerase II elongation complex stalled at a cyclobutane pyrimidine dimer lesion solved using streptavidin affinity grids. Journal of structural biology 207, 270-278 (2019).
19 Konovalov, K. A. et al. 8-Oxo-guanine DNA damage induces transcription errors by escaping two distinct fidelity control checkpoints of RNA polymerase II. J Biol Chem 294, 4924-4933, doi:10.1074/jbc.RA118.007333 (2019).
20 Kang, P. A., Oh, J., Lee, H., Witte, C. P. & Rhee, S. Crystal structure and mutational analyses of ribokinase from Arabidopsis thaliana. J Struct Biol 206, 110-118, doi:10.1016/j.jsb.2019.02.007 (2019).
21 Oh, J. et al. Diatom allantoin synthase provides structural insights into natural fusion protein therapeutics. ACS Chemical Biology 13, 2237-2246 (2018).
22 Oh, J., Lee, D. G., Bahn, Y. S. & Rhee, S. Crystal structure of inositol 1,3,4,5,6-pentakisphosphate 2-kinase from Cryptococcus neoformans. J Struct Biol 200, 118-123, doi:10.1016/j.jsb.2017.09.004 (2017).
23 Oh, J., Hwang, I. & Rhee, S. Structural insights into an oxalate-producing serine hydrolase with an unusual oxyanion hole and additional lyase activity. Journal of Biological Chemistry 291, 15185-15195 (2016).
24 Oh, J., Goo, E., Hwang, I. & Rhee, S. Structural basis for bacterial quorum sensing-mediated oxalogenesis. J Biol Chem 289, 11465-11475, doi:10.1074/jbc.M113.543462 (2014).
Google scholar link:
https://scholar.google.com/citations?user=blY3_t4AAAAJ&hl=ko