34. Basu, S*. (corresponding author); Amdursky, N. Circularly Polarized Luminescence from Assembled Nanoscale Particles. ACS Nano, 2025, https://doi.org/10.1021/acsnano.5c10742
33. Dolai, S.; Basu, S* (corresponding author), Manganese-Doped Zinc-Mediated Assembly of Gold Nanoclusters as a Dual-Emitting Fluorescent Probe for Surface-Controlled Ratiometric Detection of Biothiols in Complex Biofluids. Langmuir 2025, 41, 32, 21838–21845.
32. Basu, S* (corresponding author), The Importance of Defects in Controlling the Chemistry of Single-Walled Carbon Nanotubes. J Phys Chem Lett., 2025, 16, 5128–5139
31. Basu, S.; Bisker, G. Near-Infrared Fluorescent Single-Walled Carbon Nanotubes for Biosensing. Small 2025, 2502542. https://doi.org/10.1002/smll.202502542
30. Basu, S.; Hendler-Neumark, A.; Bisker, G, Role of Oxygen Defects in Eliciting a Divergent Fluorescence Response of Single-Walled Carbon Nanotubes to Dopamine and Serotonin. ACS Nano 2024, 18, 50, 34134–34146
29. Basu, S.; Hendler-Neumark, A.; Bisker, G. Ratiometric Normalization of Near-Infrared Fluorescence in Defect-Engineered Single-Walled Carbon Nanotubes for Cholesterol Detection. J. Phys. Chem. Lett. 2024, 15, 10425–10434
28. Basu, S.; Hendler-Neumark, A.; Bisker, G.; Dynamic tracking of biological processes using near-infrared fluorescent single-walled carbon nanotubes. ACS Appl. Mater. Interfaces 2024, 16, 41, 54960–54975.
Before Joining SINP, Kolkata:
27. Basu, S.; Hendler-Neumark, A.; Bisker, G.; Monitoring enzyme activity using near-infrared fluorescent single-walled carbon nanotubes. ACS Sens. 2024, 9, 5, 2237–2253.
26. Basu, S.; Hendler-Neumark, A.; Bisker, G.; Rationally Designed Functionalization of Single-Walled Carbon Nanotubes for Real-Time Monitoring of Cholinesterase Activity and Inhibition in Plasma. Small, 2024 2309481. DOI: 10.1002/smll.202309481.
25. Basu, S.;* (corresponding author), Bakulić, M. P.; Maršić, Z.; Bonačić-Koutecký, V.; Amdursky, N. Excitation-dependent fluorescence with excitation-selective circularly polarized luminescence from hierarchically organized atomic nanoclusters. ACS Nano 2023, 17, 17, 16644–16655.
24. Basu, S.; Amdursky, N. The role of surface groups in dictating the chiral-solvent-induced assembly of carbon dots into structures exhibiting circularly polarized luminescence. Small, 2022, 2205880.
23. Dolai, S.; Basu, S* (corresponding author).; Paul, A.; Aggregation induced delayed green fluorescence from assembly of gold nanoclusters: an advanced probe for “background free” pyrophosphate recognition. Mater. Adv., 2022, 3, 3286- 3292.
22. Basu, S.; Paul, A.; Antoine, R. Controlling the Chemistry of Nanoclusters: From Atomic Precision to Controlled Assembly. Nanomaterials (invited article) 2022, 12, 62.
21. Basu, S.; Hajra, A.; Chattopadhyay, A. Ambient Complexation Reaction of Zinc Acetate and Ascorbic acid Leads to a New Form of Nanoscale Particles with Emergent Optical Properties Nanoscale Adv., 2021,3, 3298- 3305.
20. Basu, S.; Fakhouri, H.; Moulin, C.; Russier-Antoine, I. P-F.; Brevet, Antoine R.; Paul, A. Nanoscale, 2021, 13, 4439-4443.
19. Guillaume Fabien Combes, Hussein Fakhouri, Christophe Moulin, Marion Girod, Franck Bertorelle, Srestha Basu, Romain Ladouce, Martina Perić Bakulić, Željka Sanader Maršić, Isabelle Russier-Antoine, Pierre François Brevet, Philippe Dugourd, Anita Krisko, Katarina Trajković, Miroslav Radman, Vlasta Bonačić Koutecký and Rodolphe Antoine. 2021. Commun Chem (nature) 4, 69 (2021).
18. Basu, S; Peric Bakulic, M; Fakhouri. H; Russier-Antoine, I; Moulin, C; Brevet, P-F; Bonacic-Koutecky, V; Antoine, R. Rationale Strategy to Tune the Optical Properties of Gold Catenane Nanoclusters by Doping with Silver Atoms. J.Phys.Chem.C , 2020, 124,35,19368- 19374.
17. Basu, S.; Hajra, A.; Gayen, C.; Paul, A. Zinc ion induced aggregation of gold clusters for visible light excitation based fluorimetric discrimination of geometrical isomers. ChemPhysChem. 2020, DOI: 10.1002/cphc.20190104.
16. Basu, S.; Gayen, C.; Dolai, S.; Paul, A.; Tailoring the luminescence of atomic clusters via Ligand Exchange Reaction Mediated post synthetic modification. Phys. Chem. Chem. Phys., 2020, 22, 3959-3964
15. Bertorelle, F.; Basu, S.; Fakhouri, H.; Perić Bakulić M.; Mignon, P.; Russier-Antoine I.; Brevet P-F., Thomas, S.; Kalarikkal, N.; Rodolphe Antoine. Nanoexpress, 2020, 3.
14. Russier-Antoine, I.; Fakhouri, H.; Basu, S.; Bertorelle, F.; Dugourd, P.; Brevet,P-F. ; Velayudhan, P; Thomas,S.; Kalarikkalb, N.; Antoine, R. Second Harmonic Scattering from Mass Characterized 2D Graphene Oxide Sheets. Chem. Commun., 2020, 56, 3859-3862.
13. Paul, M.; Basu, S., Chattopadhyay, A. Complexation Reaction-Based Two-Dimensional Luminescent Crystalline Assembly of Atomic Clusters for Recyclable Storage of Oxygen. Langmuir. 2020, 36, 754-759.
12. Basu, S.; Nawaj, W.; Gayen, G.; Paul, A. Photo induced chemical modification of surface ligands for aggregation and luminescence modulation of copper nanoclusters in presence of oxygen, PhysChemChemPhys 2019, 21, 21776-21781.
11. Basu, S.; Hajra, A.; Chattopadhyay, A. Ambient Complexation Reaction of Zinc Acetate and Ascorbic acid Leads to a New Form of Nanoscale Particles with Emergent Optical Properties. 2019, ChemRxiv. DOI: 10.26434/chemrxiv.9724889.
10. Basu, S. Gayen, C.; Goswami, U.; Paul, A. Visible light excitation induced luminescence from gold nanoclusters following surface ligand complexation with Zn2+ for day light sensing and cellular imaging. Langmuir, 2019, 35, 9037-9043.
9. Basu, S.; Chattopadhyay, A. Room-Temperature Delayed Fluorescence of Gold Nanoclusters in Zinc- Mediated Two-Dimensional Crystalline Assembly. Langmuir, 2019, 35, 5264– 5270.
8. Gayen, C.; Goswami, U.; Gogoi, Kasturi.; Basu, S.; Paul, A. Crystallization‐Induced Emission Enhancement of Nanoclusters and One‐Step Conversion of “Nanoclusters to Nanoparticles” as the Basis for Intracellular Logic Operations. ChemphysChem, 2019, 20, 953-958.
7. Gayen, C.; Basu, S.; Paul, A. Few particle level chromaticity index based discrimination of biothiols using a dual emitting nanoprobe. ACS Omega, 2018, 17220–17226.
6. Basu, S.; Bhandari, S.; Pan, Uday Narayan. Paul, A.; Chattopadhyay, A. Crystalline assembly of gold nanoclusters for carbon dioxide storage and sensing via modulation of photoluminescence intermittency. J. Mater. Chem. C, 2018,6, 8205-8211.
5. Basu, S.; Goswami, U.; Paul, A.; Chattopadhyay, A. Crystalline assembly of gold nanoclusters for mitochondria targeted cancer theranostics. J. Mater. Chem. B, 2018, 6, 1650- 1657.
4. Basu, S.; Paul, A.; Chattopadhyay, A. Zinc Coordinated Hierarchical Organization of Gold Nanoclusters for Chiral recognition Supplemented with Separation. Chem. Eur. J. 2017, 23, 9137.
3. Goswami, U.; Basu, S.; Paul, A.; Ghosh, S S, Chattopadhyay, A. White Light Emission from Bacteria Embedded with Gold Nanoclusters. J. Mater. Chem. C, 2017,5, 12360- 12364.
2. Basu, S.; Sahoo, A. K, Paul, A.; Chattopadhyay, A. Thumb Imprint Based Detection of Hyperbilirubinemia Using Luminescent Gold Nanoclusters. Sci Rep, 6, 2016, doi:10.1038/srep39005.
1. Basu, S.; Paul, A.; Chattopadhyay, A. Zinc Mediated Crystalline Assembly of Gold Nanoclusters for Expedient Hydrogen Storage and Sensing. J. Mater. Chem. A 2016, 4, 1218-1223.