紫質分子:從自然啟發到能源應用
紫質(Porphyrin)是一類結構對稱、具共軛性與電子可調控性的有機分子,其基本骨架來自四個吡咯環(Pyrrole)的環狀連結。紫質在自然界中扮演關鍵角色,例如生物體的血紅素(Heme)含有鐵紫質參與血液中的氧氣運輸與植物的葉綠素(Chlorophyll)是含有鎂金屬的紫質可進行光合作用。透過分子設計,紫質的光電性質可被精細調控,成為開發高效能能源材料的重要基礎。
Porphyrin Molecules: from Nature to Energy
Porphyrins are a class of compounds containing a total of 22 π electrons, of which typically only 18 are delocalized and aromatic. Their fundamental framework is derived from the cyclic connection of four pyrrole rings. Porphyrins play crucial roles in nature; for example, heme, an iron porphyrin complex, is responsible for oxygen transport in blood, while chlorophyll, a magnesium porphyrin complex, enables photosynthesis in plants. Through molecular design, the optoelectronic properties of porphyrins can be finely tuned, providing a vital foundation for the development of high-performance energy materials.
邁向淨零碳排:分子科學的角色
在面對現下的氣候變遷與能源轉型挑戰,發展能實現低碳甚至零碳排放的材料與技術,已是不可忽視的研究方向。除了提升綠能轉換效率,如何有效地捕捉與再利用二氧化碳CO2,將其轉化為可用的化學原料或燃料的技術亦至關重要。我們專注於開發低碳排材料技術,如染料敏化太陽能電池與CO₂催化還原反應。模擬自然界酵素的質子傳遞機制,設計具高選擇性與低過電位的催化劑。
Towards Net-Zero Carbon: Materials Science
Addressing current challenges in climate change and energy transition, the development of materials and technologies that enable low-carbon or even zero-carbon emissions has become an indispensable research area. Beyond improving the efficiency of green energy conversion, technologies for effectively capturing and reusing carbon dioxide (CO₂) by converting it into useful chemical feedstocks or fuels are also of critical importance. Our research focuses on developing low-carbon emission materials and technologies, such as new generation of solar cells and CO₂ catalytic reduction reactions. Inspired by the proton transfer mechanisms of natural enzymes, we aim to develop highly selective catalysts that operate efficiently under low overpotentials.
紫質在太陽能與CO₂轉換的應用潛力
透過分子設計,紫質可用於新一代染料敏化太陽能電池中,協助提高光電轉換效率。在催化應用方面,金屬紫質錯合物已被證實可促進二氧化碳的選擇性還原反應。特別是透過在調控紫質結構與電子性質,可進一步模擬自然界酵素的功能,實現較低過電位與更高選擇性的CO₂轉化反應,提升催化活性與選擇性,為碳循環應用提供新的可能性。
Porphyrins for Solar Energy and CO₂ Conversion
With appropriate molecular design, porphyrins can be applied in next-generation solar cells to improve photoelectric conversion efficiency. In catalytic applications, metal–porphyrin complexes have been demonstrated to promote the efficient and highly selective reduction of carbon dioxide. In particular, by tuning the structure and electronic properties of porphyrins, it is possible to further mimic the functions of natural enzymes, enabling CO₂ conversion reactions with lower overpotentials and higher selectivity. Such advances enhance catalytic activity and selectivity, opening new possibilities for carbon cycle applications.