Research

Advancing mass spectrometer technology to drive biology

Kim JE, Han D, et al., Molecular & Cellular Proteomics, 2021

[Clinical Proteomics]

To improve human health, researchers must understand disease mechanisms at a molecular level. Our proteomic technologies provide unprecedented views of how molecules interact, when they are mis-regulated, and where they are mutated during disease progression. With this detailed information chemists can design better drugs and clinicians can provide better diagnoses. Clinical proteomics study is typically done collaboratively with world-renowned scientists and physicians from across the country, e.g., Seoul National University Hospital, College of medicine-Seoul National University, Asan medical center, Bundang CHA hospital, among many others.

다양한 질병의 발병 기전을 분자 수준에서 이해하기 위하여 질량분석기 기반의 단백체학 연구기법을 통한 연구를 진행합니다. 서울대학교병원, 서울대학교 의과대학, 분당 서울대학교병원, 아산 병원, 분당 차병원 등의 국내 유수 임상 연구진과의 공동 연구를 통해서 다양한 질환에 대한 임상시료에서 단백체 분석을 수행하는 임상 단백체 연구를 진행하고 있습니다.

Son M, Kim H, Han D, et al., Clinical Cancer Research, 2021

[Quantitative Proteomics]

The quantitative proteomics group specializes in the determination of "absolute" protein quantitation in biofluids (i.e., results in terms of concentrations rather than fold-changes). We have developed multiplexed assays multiple reaction monitoring (MRM) for six human biological samples, including plasma, dried blood spots, urine, cerebrospinal fluid (CSF), fresh frozen tissue, and FFPE tissue. These highly multiplexed MRM (or PRM) assays are being used by the proteomics community to discover and validate potential biomarkers.

혈액, 혈액여지, 소변, CSF, 조직등의 다양한 임상 시료에서 100-500개 타겟 단백질에 대한 동시 정량 기술인 Multiple Reaction Monitoring (MRM) 이나 Parallel Reaction Monitoring (PRM) 기술을 개발합니다. Heavy stable isotope-labeled reference peptide 를 사용하여 절대 정량 어세이 (absolute quantification assay) 를 개발하여 다양한 질환의 조기 진단, 예후 및 치료 예측에 대한 다중 단백 마커 분석 플랫폼을 개발합니다.

[Biomarker development]

Clinical analysis of blood is the most widespread diagnostic procedure in medicine, and blood biomarkers are used to categorize patients and to support treatment decisions. However, existing biomarkers are far from comprehensive and often lack specificity and new ones are being developed at a very slow rate. Mass spectrometry (MS)-based proteomics has become a powerful technology in biological research and it is now poised to allow the characterization of the plasma proteome in great depth. Conceptually, MS-based proteomics combines all possible hypothesis-driven biomarker studies for each disease into one and furthermore defines the relation of potential biomarkers to each other. In practice, the challenges of plasma proteomics have so far prevented in-depth and quantitative studies on large cohorts. Instead, a stepwise or “triangular” strategy for biomarker discovery has been advocated, with several phases in which the number of individuals increases from a few to many, whereas the number of proteins decreases from hundreds or thousands to just a few

질량분석기 기반의 Profiling 및 Targeted Proteomics 기법을 사용하여 다양한 질환 모델에서의 단백질 마커 후보군을 발굴하고, 검증하는 연구를 진행하고 있습니다. 혈액, 소변등의 체액 시료에서 BoxCar, Data independent acquisition (DIA) 같은 최신 단백체학 기법을 사용하여 단백질 바이오마커 후보군을 동정하고, Multiple reaction monitoring (MRM), Parallel reaction monitoring (PRM) 등의 Targeted proteomics 기법을 통해서 대규모의 코호트 시료에서 Biomarker Validation 을 진행하고 있습니다.

[Degradation Proteomics]

Multi-protein complex mediated protein degradation is central to the regulation of many important biological processes. For example, recognition and degradation of ubiquitinated substrates by the 26S proteasome is tightly regulated to maintain normal cell growth. Disruption of the proteasomal degradation pathway has been implicated in a wide range of human diseases. Although the ubiquitin-proteasome system has been intensively investigated, many key questions remain unanswered in regard to its components and regulation of its activities. A key step towards a full understanding of the pathway is to investigate the multi-protein complex subunit composition, heterogeneity, post-translational modifications, assembly, multi-protein complex interaction networks and degradation substrates. Mass spectrometry-based proteomic approaches have been successfully applied for unraveling the details of the proteasome complexes and their substrates in an unprecedented fashion.

세포 내 다양한 단백질 및 RNA 복합체의 기본적인 구성성분을 프로테오믹스를 사용해서 분석하는 동시에, 질병 특이적인 마커를 발굴하고 있습니다. 선도연구센터 (SRC)에 참여하여 다른 세부과제에서 기전을 규명하거나 제어 기술을 개발하는데 공동연구를 수행하고 있습니다. Proteasome, Lysosome, Peroxisome, RNP complex 등의 거대 단백질 복합체에서 다양한 PTM 과 interaction network 을 동정하고 질병과의 연관성을 연구합니다.

[ Proteomics Technology]

We have described strategies for comprehensive analysis of numerous PTM types, including phosphorylation, acetylation, methylation, and ubiquitinylation, among others. At the same time we have pursued new methodology to allow deep, rapid sequencing of whole proteomes. We continue to innovate in this area and are currently working on profiling an entire human proteome on a rapid time scale. Furthermore, we have a goal to identify nearly complete proteome in clinical samples at nanogram scale.

Mass spectrometry 를 통한 다양한 Post-translational modification (PTM) 의 분석을 위한 sample preparation 기법을 개발합니다. 또한, 최대한의 depth 를 가지는 proteome 의 분석을 위한 sample preparation 과 Mass spectrometry acqusition 기법등을 개발합니다. 특히, 초미세 임상 시료에서의 단백체분석을 위한 다양한 방법론 개발에 집중하고 있습니다.