2024
51. D. Arumugam, N. A. Jamuna, A Kamalakshan, S Mandal* "Modulation of AIE and Intramolecular Charge Transfer of a Pyrene-Based Probe for Discriminatory Detection and Imaging of Oligomers and Amyloid Fibrils " ACS Appl. Bio Mater. (2024). [Part of special issue “Celebrating the 25th Anniversary of the Chemical Research Society of India”]
50. AM C. Devassy, K Wankhede, A Kamalakshan, S Mandal* "A Robust Single Compartment Peroxide Fuel Cell Using Mesoporous Antimony Doped Tin Oxide as Cathode Material" Nanoscale (2024), Accepted. [Part of Nanoscale 2024 Emerging Investigators]
49. A Kamalakshan, NA Jamuna, AMC Devassy, S Mandal* "Dual Optical Response Strategy for the Detection of Cytochrome c Using Highly Luminescent Lanthanide-Based Nanotubular Sensor Arrays" ACS Appl. Bio Mater. (2024), Accepted.
2023
48. R. Ansilda,$ Anu Maria C. D.,$ Adithya K., Nidhi A. J., and S. Mandal* "Plasmon-Exciton Coupling Assisted Efficient Overall Water Splitting in Alkaline Medium Using Plexcitonic NiO/Ni Foam Catalyst" ACS Appl. Eng. Mater. (2023), 11, 3108–3121. ($ Equal contribution)
47. Nidhi A. J.; Adihtya, K., B. Dandekar, Anu Maria, C. D., J. Mondal, and S. Mandal* "Mechanistic Insight into the Amyloid Fibrillation Inhibition of Hen Egg White Lysozyme by Three Different Bile Acids" J. Phys. Chem. B (2023), 127, 2198–2213. https://pubs.acs.org/doi/10.1021/acs.jpcb.3c00274
46. Adithya K., Anu Maria C. D., Nidhi A. J., and S. Mandal* "Integrating Highly Luminescent Lanthanides with Strongly Coupled Dye J-Aggregates on Nanotubes for Efficient Cascade Energy Transfer" J. Phys. Chem. C (2023), 127, 2558–2568 . https://pubs.acs.org/doi/full/10.1021/acs.jpcc.2c07128
2022
45. Anu Maria C. D., Adithya K., Nidhi A. J., R. Ansilda, and S. Mandal* "Enhanced Catalytic Activity of a New Nanobiocatalytic System Formed by the Adsorption of Cytochrome c on Pluronic Triblock Copolymer Stabilized MoS2 Nanosheets" ACS Omega (2022) 7, 16593–16604 (DOI: https://doi.org/10.1021/acsomega.2c00839 )
2021
44) Adithya K, R. Ansilda, and S. Mandal* "Nanotube Template-Directed Formation of Strongly Coupled Dye-Aggregates with Tunable Exciton Fluorescence Controlled by Switching Between J- and H-type Electronic Coupling" J. Phys. Chem. B (2021), 125, 7447–7455. https://pubs.acs.org/doi/10.1021/acs.jpcb.1c02750?ref=pdf
43) A. Singh, S. Mandal, S. Chen, M. Liu, C. J. Gisriel, A. M. Carey, H. Yan, D. K. Seo, S. Lin, and Neal W. Woodbury* “Interfacing Photosystem I Reaction Centers with a Porous Antimony-Doped Tin Oxide Electrode to Perform Light-Driven Redox Chemistry” ACS Appl. Electron. Mater. (2021) ASAP https://pubs.acs.org/doi/abs/10.1021/acsaelm.1c00101
2019
42) S. Mandal,* X. Zhou, S. Lin, H. Yan, and N. Woodbury “Directed Energy Transfer through DNA-Templated J-Aggregates” Bioconjugate Chem. (2019) ASAP (DOI: 10.1021/acs.bioconjchem.9b00043) (* As Corresponding Author)
41) S. Mandal,# X. Zhou,# S. Jiang, S. Lin, J. Yang, Y. Liu, D. G. Whitten, N. W. Woodbury, and H. Yan “Efficient Long-Range, Directional Energy Transfer through DNA-Templated Dye Aggregates” J. Am. Chem. Soc. (2019) ASAP (DOI: 10.1021/jacs.9b01548) (# Co-First Author) https://pubs.acs.org/doi/10.1021/jacs.9b01548
40) S. Mandal,* E. Espiritu, N. Akram, S. Lin, J. C. Williams, J. P. Allen, and N. W. Woodbury* “Influence of the Electrochemical Properties of the Bacteriochlorophyll Dimer on Triplet Energy Transfer Dynamics in Bacterial Reaction Centers” J. Phys. Chem. B (2018) 122, 10097–10107 (* As Corresponding Author) https://pubs.acs.org/doi/10.1021/acs.jpcb.8b07985
39) E. Boulais, N. Sawaya , R. Veneziano, A. Andreoni, J. Banal, T. Kondo, S. Mandal, S. Lin, G. Schlau-Cohen, N. Woodbury, H. Yan , A. Aspuru-Guzik, and M. Bathe “Programmed coherent coupling in a synthetic DNA-based excitonic circuit” Nature Materials, (2017) 17, 159–166 https://www.nature.com/articles/nmat5033
38) S. Mandal,* A. M. Carey, J. Locsin, B. R. Gao, J. C. Williams, J. P. Allen, S. Lin, and N. W. Woodbury* “Mechanism of triplet energy transfer in photosynthetic bacterial reaction centers” J. Phys. Chem. B (2017), 121, 6499 – 6510. (* As Corresponding Author) https://pubs.acs.org/doi/abs/10.1021/acs.jpcb.7b03373
37) J. Ma, S. Mandal, C. Bronsther, Z. Gao, and K. B. Eisenthal “Second harmonic study of acid-base equilibrium at gold nanoparticle/aqueous interface” Chem. Phys. Lett. (2017) 166 – 171. https://www.sciencedirect.com/science/article/pii/S000926141631017X
36) S. Mandal, J. Kuchlyan, S. Ghosh, C. Banerjee, N. Kundu, D. Banik, and N. Sarkar “Vesicles formed in aqueous mixtures of cholesterol and imidazolium surface active ionic liquid: a comparison with common cationic surfactant by water dynamics” J. Phys. Chem. B (2014), 118, 5913−5923. https://pubs.acs.org/doi/10.1021/jp501033n
35) S. Mandal, S. Ghosh, D. Banik, C. Banerjee, J. Kuchlyan, and N. Sarkar. “An investigation into the effect of the structure of bile salt aggregates on the binding interactions and ESIHT dynamics of curcumin.” J. Phys. Chem. B (2013), 117 (44), 13795–13807. https://www.ncbi.nlm.nih.gov/pubmed/24102639
34) S. Mandal, C. Ghatak, V. G. Rao, S. Ghosh, and N. Sarkar “Pluronic micellar aggregates loaded with gold nanoparticles and fluorescent dyes: a study of controlled nanometal surface energy transfer” J. Phys. Chem. C (2012), 116(9), 5585-5597. https://pubs.acs.org/doi/abs/10.1021/jp2093127
33) S. Mandal, S. Ghosh, C. Banerjee, J. Kuchlyan, and N. Sarkar. “Unique photophysical behavior of 2,2′-bipyridine-3,3′-diol in DMSO–water binary mixtures: potential application for fluorescence sensing of Zn2+” J. Phys. Chem. B (2013), 117 (40), 12212–12223. https://pubs.acs.org/doi/10.1021/jp406853r
32) S. Mandal, C. Banerjee, S. Ghosh, J. Kuchlyan, and N. Sarkar. “Modulation of the photophysical properties of curcumin in non-ionic surfactant forming micelles and niosomes” J. Phys. Chem. B (2013), 117 (23), 6957–6968.
31) S. Mandal, S. Ghosh, C. Banerjee, J. Kuchlyan, and N. Sarkar. “Roles of viscosity, polarity, and hydrogen bonding ability of a pyrrolidinium ionic liquid and its binary mixtures in the photophysics and rotational dynamics of 2,2'-bipyridine-3,3'-diol.” J. Phys. Chem. B (2013), 117 (22), 6789–6800.
30) S. Mandal, S. Ghosh, C. Banerjee, J. Kuchlyan, D. Banik, and N. Sarkar “A novel ionic liquid-in-oil microemulsion composed of biologically acceptable components: an excitation wavelength dependent fluorescence resonance energy transfer study” J. Phys. Chem. B (2013), 117(11), 3221−3231. https://pubs.acs.org/doi/abs/10.1021/jp4025443
29) S. Mandal, S. Ghosh, H. H. K. Aggala, C. Banerjee, V. G. Rao, and N. Sarkar “Modulation of the photophysical properties of 2,2′-bipyridine-3,3′-diol inside bile salt aggregates: a fluorescence-based study for the molecular recognition of bile Salts” Langmuir (2013), 29 (1), 133–143. https://www.ncbi.nlm.nih.gov/pubmed/23215031
28) S. Mandal, S. Ghosh, C. Banerjee, V. G. Rao, and N. Sarkar “Modulation of photophysics and photodynamics of 1'-hydroxy-2'-acetonaphthone in bile salt aggregates: a study of polarity and nanoconfinement effects” J. Phys. Chem. B (2012), 116(30), 8780-8792. https://pubs.acs.org/doi/10.1021/jp302435h
27) S. Mandal, V. G. Rao, C. Ghatak, R. Pramanik, S. Sarkar, and N. Sarkar “Photophysics and photodynamics of 1'-hydroxy-2'-acetonaphthone in micelles and nonionic surfactants forming vesicles” J. Phys. Chem. B (2011), 115(42), 12108-12119. https://pubs.acs.org/doi/10.1021/jp204224f
26) S. Mandal, J. Kuchlyan, S. Ghosh, C. Banerjee, D. Banik, and N. Sarkar “Ultrafast FRET to study spontaneous micelle-to-vesicle transitions in an aqueous mixed surface-active ionic-liquid system” ChemPhysChem (2014) 15(16), 3544 – 3553. https://onlinelibrary.wiley.com/doi/abs/10.1002/cphc.201402372
25) C. Banerjee, S. Mandal, S. Ghosh, J. Kuchlyan, N. Kundu, and N. Sarkar “Unique characteristics of ionic liquids comprised of long-chain cations and anions: a new physical insight” J. Phys. Chem. B (2013), 117(14), 3927–3934.
24) V. G. Rao, S. Mandal, S. Ghosh, C. Banerjee, and N. Sarkar “Phase boundaries, structural characteristics, and NMR spectra of ionic liquid-in-oil microemulsions containing double chain surface active ionic liquid” J. Phys. Chem. B (2013) 117(5), 1480–1493.
23) V. G. Rao, S. Mandal, S. Ghosh, C. Banerjee, and N. Sarkar “Aggregation behavior of triton X-100 with a mixture of two room-temperature ionic liquids” J. Phys. Chem. B (2012), 116(47), 13868-13877.
22) V. G. Rao, S. Mandal, S. Ghosh, C. Banerjee, and N. Sarkar “Study of fluorescence resonance energy transfer in zwitterionic micelle: Ionic-liquid-induced changes in FRET parameters” J. Phys. Chem. B (2012), 116(39), 12021-12029.
21) C. Banerjee, S. Mandal, S. Ghosh, V. G. Rao, and N. Sarkar “Tuning the probe location on zwitterionic micellar system with variation of pH and addition of surfactants with different alkyl chains” J. Phys. Chem. B (2012), 116(36), 11313-11322.
20) S. Ghosh, S. Mandal, C. Banerjee, V. G. Rao, and N. Sarkar “Photophysics of 3,3'-diethyloxadicarbocyanine iodide (DODCI) in ionic liquid micelle and binary mixtures of ionic liquids” J. Phys. Chem. B (2012), 116(31), 9482-9491.
19) V. G. Rao, S. Mandal, S. Ghosh, C. Banerjee, and N. Sarkar “Ionic liquid-in-oil microemulsions composed of double chain surface active ionic liquid as a surfactant: Temperature dependent solvent and rotational relaxation dynamics of Coumarin-153 in [Py][TF2N]/[C4mim][AOT] /benzene microemulsions” J. Phys. Chem. B (2012), 116(28), 8210-8221.
18) S. Sarkar, S. Mandal, C. Ghatak, V. G. Rao, S. Ghosh, and N. Sarkar “Photoinduced electron transfer in an imidazolium ionic liquid and in its binary mixtures with water, methanol, and 2-propanol” J. Phys. Chem. B (2012), 116(4), 1335-1344.
16) S. Sarkar, S. Mandal, R. Pramanik, C. Ghatak, V. G. Rao, and N. Sarkar “Photoinduced electron transfer in a room temperature ionic liquid 1-butyl-3-methylimidazolium octyl-sulfate micelle: A temperature dependent study” J. Phys. Chem. B (2011), 115(19), 6100-6110.
15) S. Ghosh, C. Banerjee, S. Mandal, J. Kuchlyan, and N. Sarkar “Effect of Alkyl Chain of Room Temperature Ionic Liquid (RTILs) on the Phase Behavior of [C2mim][CnSO4]/TX-100/Cyclohexane Microemulsions” J. Phys. Chem. B (2013), 117 (19), 5886–5897.
14) C. Banerjee, C. Ghatak, S. Mandal, S. Ghosh, J. Kuchlyan, and N. Sarkar “Curcumin in Reverse Micelle: An Example to Control Excited-State Intramolecular Proton Transfer (ESIPT) in Confined Media” J. Phys. Chem. B (2013), 117 (23), 6906–6916.
13) V. G. Rao, U. Brahmachari, S. Mandal, S. Ghosh, C. Banerjee, and N. Sarkar “Protic ionic liquid-induced changes in the properties of aqueous triton X-100 CTAB surfactant solution: Solvent and rotational relaxation studies” Chem. Phys. Lett. (2012), 552, 38-43.
12) C. Ghatak, V. G. Rao, S. Mandal, S. Ghosh, and N. Sarkar “An understanding of the modulation of photophysical properties of curcumin inside a micelle formed by an ionic Liquid: A new possibility of tunable drug delivery system” J. Phys. Chem. B (2012), 116(10), 3369-3379.
11) C. Ghatak, V. G. Rao, S. Mandal, and N. Sarkar “Photoinduced electron transfer between various coumarin analogues and N,N-dimethylaniline inside niosome, a nonionic innocuous polyethylene glycol-based surfactant assembly” Phys. Chem. Chem. Phys. (2012), 14(25), 8925-8935.
10) S. Ghosh, C. Ghatak, C. Banerjee, S. Mandal, J. Kuchlyan, and N. Sarkar “Spontaneous Transition of Micelle–Vesicle–Micelle in a Mixture of Cationic Surfactant and Anionic Surfactant-like Ionic Liquid: A Pure Nonlipid Small Unilamellar Vesicular Template Used for Solvent and Rotational Relaxation Study” Langmuir (2013), 29 (32), 10066–10076.
9) V. G. Rao, C. Banerjee, S. Ghosh, S. Mandal, J. Kuchlyan, and N. Sarkar “A Step toward the Development of High-Temperature Stable Ionic Liquid-in-Oil Microemulsions Containing Double-Chain Anionic Surface Active Ionic Liquid” J. Phys. Chem. B (2013), 117 (24), 7472–7480.
8) C. Ghatak, V. G. Rao, S. Mandal, R. Pramanik, S. Sarkar, P. K. Verma, and N. Sarkar “Förster resonance energy transfer among a structural isomer of adenine and various coumarins inside a nanosized reverse micelle” Spectrochimica Acta, Part A (2012), 89, 67-73.
7) C. Banerjee, N. Kundu, S. Ghosh, S. Mandal, J. Kuchlyan, and N. Sarkar “Fluorescence Resonance Energy Transfer in Microemulsions Composed of Tripled-Chain Surface Active Ionic Liquids, RTILs, and Biological Solvent: An Excitation Wavelength Dependence Study” J. Phys. Chem. B (2013), 117 (32), 9508–9517.
6) V. G. Rao, C. Ghatak, S. Ghosh, S. Mandal, and N. Sarkar “Ionic-liquid-induced changes in the properties of aqueous zwitterionic surfactant solution: Solvent and rotational relaxation studies” J. Phys. Chem. B (2012), 116(12), 3690-3698.
5) V. G. Rao, C. Ghatak, S. Ghosh, S. Mandal, and N. Sarkar “The chameleon-like nature of zwitterionic micelles: The effect of ionic liquid addition on the properties of aqueous sulfobetaine micelles” ChemPhysChem (2012), 13(7), 1893-1901.
4) V. G. Rao, S. Ghosh, C. Ghatak, S. Mandal, U. Brahmachari, and N. Sarkar “Designing a New Strategy for the Formation of IL-in-Oil Microemulsions” J. Phys. Chem. B (2012), 116(9), 2850-2855.
3) C. Ghatak, V. G. Rao, S. Ghosh, S. Mandal, and N. Sarkar “Solvation dynamics and rotational relaxation study inside niosome, a nonionic innocuous poly(ethylene Glycol)-based surfactant assembly: An excitation wavelength dependent experiment” J. Phys. Chem. B (2011), 115(43), 12514-12520.
2) R. Pramanik, S. Sarkar, C. Ghatak, V. G. Rao, S. Mandal, and N. Sarkar “Effects of 1-butyl-3-methyl imidazolium tetrafluoroborate ionic liquid on triton X-100 aqueous micelles: Solvent and rotational relaxation studies” J. Phys. Chem. B (2011), 115(21), 6957-6963.
1) V. G. Rao, C. Ghatak, S. Ghosh, R. Pramanik, S. Sarkar, S. Mandal, and N. Sarkar “Ionic liquid-induced changes in properties of aqueous cetyltrimethylammonium bromide: A comparative study of two protic ionic liquids with different anions” J. Phys. Chem. B (2011), 115(14), 3828-3837.