You may find many of the articles below on arXiv here.
[36] S. Correia, S. Kinoshita, Global well-posedness and scattering for the 2D modified Zakharov-Kuznetsov equation (2025), arXiv:2507.23397
[35] S. Correia, J. Natário, J. D. Silva, Elastic rigid rod in an expanding universe (2025), arXiv:2507.21227
[34] M. Baldasso, S. Correia, Nonlinear smoothing implies improved lower bounds on the radius of spatial analyticity for nonlinear dispersive equations (2025), arXiv:2507.13083
[33] F. Agostinho, S. Correia, H. Tavares, Stability transitions of NLS action ground-states on metric graphs (2025), arXiv:2506.23166
[32] F. Agostinho, S. Correia, H. Tavares, A comprehensive study of bound-states for the nonlinear Schrödinger equation on single-knot metric graphs (2025), arXiv:2502.14097
[31] S. Correia, R. Côte, Sharp blow-up stability for self-similar solutions of the modified Korteweg-de Vries equation (2024), arXiv:2402.16423
[30] S. Correia, P. Leite, Sharp local existence and nonlinear smoothing for dispersive equations with higher-order nonlinearities, Math. Zeitschrift (2025), vol. 310, no. 60
[29] S. Correia, F. Linares, J. D. Silva, Sharp local well-posedness for the Schrödinger-Korteweg-de Vries system (2024), to appear in Math. Research Letters, arXiv:2408.10028
[28] L. Campos, S. Correia, L. G. Farah, Sharp well-posedness and ill-posedness results for the inhomogeneous NLS equation, Nonlinear Analysis: Real World Applications (2025) 85,104336
[27] S. Correia, F. Oliveira, J. D. Silva, Sharp local well-posedness and nonlinear smoothing for dispersive equations through frequency-restricted estimates, SIAM J. Math. Anal. (2024) 56, no. 4
[26] S. Correia, Improved global well-posedness for the quartic Korteweg-de Vries equation, Proc. Amer. Math. Soc. 152 (2024), 5117-5136
[25] S. Correia, R. Côte, Perturbation at blow-up time of self-similar solutions for the modified Korteweg-de Vries equation, ARMA (2024) 248, 25.
[24] F. Agostinho, S. Correia, H. Tavares, Classification and stability of positive solutions to the NLS equation on the T-metric graph, Nonlinearity (2023) 37, no. 2.
[23] S. Correia, M. Figueira, A note on bifurcations from eigenvalues of the Dirichlet-Laplacian with arbitrary multiplicity, Nonlinear Differ. Equ. Appl. (2023) 30, 37.
[22] S. Correia, F. Oliveira, J. D. Silva, Mass-transfer instability of ground-states for Hamiltonian Schrödinger systems, J. Anal. Math. (2022), 148, 681–710.
[21] V. Barros, S. Correia, F. Oliveira, On the nonlinear Schrödinger equation in spaces of infinite mass and low regularity, Differential Integral Equations (2022), 35(7/8): 371-392
[20] S. Correia, M. Figueira, A generalized Complex Ginzburg-Landau Equation: global existence and stability results, Comm. Pure Appl. Anal. (2021), vol. 20(5) 2021-2038.
[19] S. Correia, Nonlinear smoothing and unconditional uniqueness for the Benjamin-Ono equation in weighted Sobolev spaces, Nonlinear Analysis (2021), vol. 205, 112227.
[18] S. Correia, R. Côte, L. Vega, Self-Similar Dynamics for the Modified Korteweg–de Vries Equation, International Mathematics Research Notices, (2020), rnz383.
[17] S. Correia, J. D. Silva, Nonlinear smoothing for dispersive PDE: A unified approach. J. Differential Equations 269 (2020), no. 5, 4253–4285.
[16] S. Correia, R. Côte, L. Vega, Asymptotics in Fourier space of self-similar solutions to the modified Korteweg–de Vries equation. J. Math. Pures Appl. (9) 137 (2020), 101–142.
[15] S. Correia, M. Figueira, Some stability results for the complex Ginzburg–Landau equation, Communications in Contemporary Mathematics 22 (2019), no. 08.
[14] S. Correia, Finite speed of disturbance for the nonlinear Schrödinger equation. Proc. Roy. Soc. Edinburgh Sect. A 149 (2019), no. 6, 1405–1419.
[13] A. Corcho, S. Correia, F. Oliveira, J. D. Silva, On a nonlinear Schrödinger system arising in quadratic media. Commun. Math. Sci. 17 (2019), no. 4, 969–987.
[12] S. Correia, M. Figueira, Some L^∞ solutions of the hyperbolic nonlinear Schrödinger equation and their stability. Adv. Differential Equations 24 (2019), no. 1-2, 1–30.
[11] S. Correia, F. Oliveira, Scattering theory for the Schrödinger-Debye system. Nonlinearity 31 (2018), no. 7, 3203–3227.
[10] S. Correia, Local Cauchy theory for the nonlinear Schrödinger equation in spaces of infinite mass. Rev. Mat. Complut. 31 (2018), no. 2, 449–465.
[9] S. Correia, M. Figueira, Existence and stability of spatial plane waves for the incompressible Navier-Stokes in R^3. J. Math. Fluid Mech. 20 (2018), no. 1, 189–197.
[8] S. Correia, M. Figueira, Spatial plane waves for the nonlinear Schrödinger equation: local existence and stability results. Comm. Partial Differential Equations 42 (2017), no. 4, 519–555.
[7] S. Correia, F. Oliveira, H. Tavares, Semitrivial vs. fully nontrivial ground states in cooperative cubic Schrödinger systems with d≥3 equations. J. Funct. Anal. 271 (2016), no. 8, 2247–2273.
[6] S. Correia, Ground-states for systems of M coupled semilinear Schrödinger equations with attraction-repulsion effects: characterization and perturbation results. Nonlinear Anal. 140 (2016), 112–129.
[5] S. Correia, Stability of ground-states for a system of M coupled semilinear Schrödinger equations. NoDEA Nonlinear Differential Equations Appl. 23 (2016), no. 3, Art. 26, 14 pp.
[4] S. Correia. Characterization of ground-states for a system of M coupled semilinear Schrödinger equations and applications. J. Differential Equations 260 (2016), no. 4, 3302–3326.
[3] T. Cazenave, S. Correia, F. Dickstein, F. B. Weissler, A Fujita-type blowup result and low energy scattering for a nonlinear Schrödinger equation. São Paulo J. Math. Sci. 9 (2015), no. 2, 146–161.
[2] S. Correia, Blowup for the nonlinear Schrödinger equation with an inhomogeneous damping term in the L^2-critical case. Commun. Contemp. Math. 17 (2015), no. 3, 1450030, 16 pp.
[1] S. Correia, L. Sanchez, Progressive waves in the Fisher-Kolmogorov model—a modern classic. (Portuguese) Bol. Soc. Port. Mat. No. 67 (2012), 165–184.