E. Reulen, S. Mehrkanoon, “GA-SmaAt-GNet: Generative Adverserial Small Attention GNet for Extreme Precipitation Nowcasting”, [arXiv, Github].
L. Vatamany, S. Mehrkanoon, “GD-CAF: Graph Dual-stream Convolutional Attentntion Fusion For Weather Data Fusion Precipitation Nowcasting”, [arXiv, Github].
C. Kaparakis, S. Mehrkanoon, “WF-UNet: Weather Data Fusion using 3D-UNet for Precipitation Nowcasting”, Procedia Computer Science, vol 222, pp. 223-232, 2023. [Github].
OnurBilgin, ThomasVergutz, S. Mehrkanoon, “AA-TransUNet: Attention Augmented TransUNet for Nowcasting Tasks”, IEEE-IJCNN, 2022. [Github].
OnurBilgin, ThomasVergutz, S. Mehrkanoon, “GCN-FFNN: A Two-Stream Deep Model for Learning Solution to Partial Differential Equations ”, Neurocomputing 511, pp. 131-141, 2022. [Github].
D Aykas, S. Mehrkanoon, “Multistream Graph Attention Networks for Wind Speed Forecasting ”, IEEE-SSCI, 2021. [Github].
T. Stanczyk, S. Mehrkanoon, “Deep Graph Convolutional Networks for Wind Speed Prediction”, ESANN 2021, [Github, DATA]
J.G. Fernández, I.A. Abdellaoui , S. Mehrkanoon, “Deep coastal sea elements forecasting using UNet-based models ”, Knowledge-Based Systems, Vol 252, Sept 2022, 109445. [Github]
K. Trebing, S. Mehrkanoon, “SmaAt-UNet: Precipitation nowcasting using a small attention-UNet architecture, Pattern Recognition Letters, Vol 145, May 2021, Pages 178-186. [Github]
S. Mehrkanoon, “Deep shared representation learning for weather elements forecasting ”, Knowledge-Based Systems, Vol 179, pp. 120-128,Sept 2019[pdf][dataset]
S. Mehrkanoon, J. A. K. Suykens, "Multi-Label Semi-Supervised Learning using Regularized Kernel Spectral Clustering'', in Proc. of International Joint Conference on Neural Networks (IJCNN), Vancouver, Canada, Jul.2016, pp. 4009-4016. [PDF][Matlab Code]
S. Mehrkanoon, M. Agudelo, J. A. K. Suykens, "Incremental multi-class semi-supervised clustering regularized by Kalman filtering'', Neural Networks, Vol. 71, Aug.2015, pp. 88-104. [PDF][Datasets]
S. Mehrkanoon, X. Huang, J.A.K. Suykens, "Non-parallel support vector classifiers with different loss functions", Neurocomputing, Vol. 143, Nov.2014, pp. 294-301.[PDF][Matlab Code]
S. Mehrkanoon, T. Falck, J. A. K. Suykens, “Parameter estimation for time varying dynamical systems using least squares support vector machines,” In proc. of the 16th IFAC Symposium on System Identification (SYSID), Jul. 2012, Brussels, Belgium, pp. 1300-1305. [PDF][Matlab Code]
S. Mehrkanoon, J.A.K. Suykens, "Learning Solutions to Partial Differential Equations using LS-SVM'', Neurocomputing, Vol. 159, 105-116, 2015. [PDF][Github]
S. Mehrkanoon, J. A. K. Suykens, "LS-SVM approximate solution to linear time varying descriptor systems", Automatica, 48(10), 2502-2511, 2012. [PDF][Code]
S. Mehrkanoon, T. Falck, J. A. K. Suykens, "Approximate solutions to ordinary differential equations using least squares support vector machines", IEEE Trans. Neural Netw. Learning Syst, 23(9), 1356-1367, 2012. [PDF][Github]
S. Mehrkanoon, "A direct variable step block multistep method for solving general third-order ODEs", Numerical Algorithms, 57(1), 53-66, 2011. [PDF][C Code]