2025
Qi Y, and Suzuki SW*. (2025). TEX264-mediated selective autophagy directs DNA damage repair. Trends Biochem. Sci. 50(1):4-5.
2024
Suzuki SW*, West M, Zang Y, Fan JS, Roberts RT, Odorizzi G, and Emr SD. (2024). A role for Vps13-mediated lipid transfer at the ER-endosome contact site in ESCRT-mediated sorting. J. Cell Biol. 223(4): e202307094.
2022
Suzuki SW, and Emr SD. (2022). Immunoisolation of endosomal recycling vesicles from S.cerevisiae. bio-protocol, in press
Banjade S, Zhu L, Jorgensen JR, Suzuki SW, and Emr SD. (2022). Recruitment and organization of ESCRT-0 and ubiquitinated cargo via condensation. Science Advances, 8:eabm5149.
2021
Suzuki SW, Oishi A, Nikulin N, Jorgensen JR, Baile MG, and Emr SD. (2021). A PX-BAR protein Mvp1/SNX8 and a dynamin-like GTPase Vps1 drive endosomal recycling. eLife, 10:e69883.
This study showed a novel endosomal recycling pathway required for endosomal localization of membrane proteins. I demonstrated that a Mvp1/Snx8 coat complex mediates recycling vesicle formation from the endosome in this pathway.
2019
Suzuki SW, Chuang YS, Li M, Seaman MNJ, and Emr SD. (2019). A bipartite sorting signal ensures specificity of retromer complex in membrane protein recycling. J. Cell Biol., 218(9), 2876-2886. [Highlighted in the news and views in Nat. Cell Biol. (PMID: 31576057)]
This study revealed how the retromer coat complex precisely recognizes its cargo. I found that multiple retromer binding sites for cargoes ensures accurate cargo recognition.
2018
Suzuki SW and Emr SD. (2018). Retrograde trafficking from the vacuole/lysosome membrane. Autophagy, 14(9), 1654-1655.
Suzuki SW and Emr SD. (2018). Membrane protein recycling from the vacuole/lysosome membrane. J. Cell Biol., 217(5), 1623-1632. [Highlighted in Prospects and Overviews in BioEssays (PMID: 30706963)] [Selected in a special collection of “Lipid and membrane biology”, “Autophagy” in J. Cell biol.]
This study discovered a novel membrane protein recycling pathway from the vacuole membrane. This recycling pathway is mediated by a Snx4 coat complex.
2016
Yamamoto H*, Fujioka Y*, Suzuki SW* (*co-first author), Noshiro D, Kondo-Kakuta C, Kimura Y, Hirano H, Arisaka F, Ando T, Noda NN, and Ohsumi Y. (2016). An intrinsically disordered protein Atg13 links multiple Atg1 complexes to facilitate higher-order assembly of autophagy initiation machineries. Dev. Cell, 38(1), 86-89. [Highlighted in Nobel prize lecture at 2016]
2015
Sakakibara K, Eiyama A†, Suzuki SW† (†contribute equally), Sakoh-Nakatogawa M†, Okumura N†, Tani M†, Hashimoto A, Nagumo S, Kondo-Okamoto N, Kondo-Kakuta C, Asai E, Kirisako H, Nakatogawa H, Kuge O, Takao T, Ohsumi Y, and Okamoto K. (2015). Phospholipid methylation controls Atg32-mediated mitophagy and Atg8 recycling. EMBO J., 34(21): 2703-2719.
Yu F, Imamura Y, Ueno M, Suzuki SW, Ohsumi Y, Yukawa M, and Tsuchiya E. (2015). The yeast chromatin remodeler Rsc1-RSC complex is required for transcriptional activation of autophagy-related genes and inhibition of the TORC1 pathway in response to nitrogen starvation. Biochem. Biophys. Res. Commun., 464(4), 1248-1253.
Suzuki SW, Yamamoto H, Oikawa Y, Kondo-Kakuta C, Kimura Y, Hirano H, and Ohsumi Y. (2015). Atg13 HORMA domain recruits Atg9 vesicles during autophagosome formation. Proc. Natl. Acad. Sci. USA, 112(11), 3350-3355. [Highlighted in Nobel prize lecture at 2016]
2014
Fujioka Y*, Suzuki SW* (*co-first author), Yamamoto Y*, Kondo-Kakuta C, Kimura Y, Hirano Y, Akada R, Inagaki F, Ohsumi Y and Noda NN. (2014). Structural basis of starvation-induced assembly of the autophagy initiation complex. Nat. Struct. Mol. Biol., 21(6), 513-521. [Selected by the Faculty of 1000 Biology member] [Highlighted in Nobel prize lecture at 2016]
2012
Nakatogawa H, Ohbayashi S, Sakoh-Nakatogawa M, Kakuta S, Suzuki SW, Kirisako H, Kondo-Kakuta C, Noda NN, Yamamoto H, and Ohsumi Y. (2012). The autophagy-related protein kinase Atg1 interacts with the ubiquitin-like protein Atg8 via the Atg8 family interacting motif to facilitate autophagosome formation. J. Biol. Chem., 287, 28503-28507.
Kondo-Okamoto N, Noda NN, Suzuki SW, Nakatogawa H, Takahashi I, Matsunami M, Hashimoto A, Inagaki F, Ohsumi Y, and Okamoto K. (2012). Autophagy-related protein 32 acts as autophagic degron and directly initiates mitophagy. J. Biol. Chem., 287, 10631-10638. [Selected by the Faculty of 1000 Biology member]
2011
Suzuki SW, Onodera J, and Ohsumi Y. (2011). Starvation induced cell death in autophagy-defective yeast mutants is caused by mitochondria dysfunction. PLoS ONE., 6, e17412.