Dr. Sho Sonoda is a Permanent Senior Research Scientist at Deep Learning Theory Team (PI: Prof. Taiji Suzuki), RIKEN AIP and Research Scientist at AI Lab, CyberAgent, Inc. He received the degree of Doctor of Engineering from Waseda University in 2017 under the supervision of Prof. Noboru Murata. He joined RIKEN in 2018, and he was tenured in 2021. His expertise is in theory and application of machine learning, and especially in harmonic analysis for neural networks. Since early 2023, he has also been working on AI4Math.
researchmap: https://researchmap.jp/shosonoda
AI4Math
Deep Learning Theory
Deep Ridgelet Transform: Harmonic Analysis for Deep Neural Networks: slide v. Jul2025 (english)
積分表現でニューラルネットを理解する(OCAMI「人工知能と数学」)YouTube動画, slide v2024年3月(日本語)
(一般向け)機械学習を支える数学(数学キャラバン2024)slide
AIP Open Seminar recordings, Apr2021 (YouTube video, english)
AI4Math
LeanConjecturer: LLM Conjecturing for AI Theorem Proving: slide v. Jul2025 (english)
Lean Formalization of Generalization Error Bounds by Rademacher Complexity: v. Apr2025 (english)
Lean4 による汎化誤差評価の形式化: v. 2025年6月(日本語 by 塚本さん)
Deep Learning Theory
Growth Rate Controls Depth Dependence of Generalization Error Bounds: slide v. Jun2025 (english)
Ridgelet Analysis
Deep Ridgelet Transform for Joint-Group-Equivariant Machine: slide v. Jul2025 (english)
General Ridgelet Transform Induced from Group Invariant Functions: slide v. Dec2023 (english)
Ridgelet Transform for Group Convolutional Neural Networks: slide v. Nov2022 (english) v. 2022年9月(日本語), poster
Ridgelet Transform for Neural Networks on Noncompact Symmetric Space and Helgason-Fourier Analysis: slide v. Aug2022 (english), poster
Ghosts (or Null Space) in Neural Networks: slide v. Jun2021 (english)
ニューラルネットの零空間(勉強会資料):slide v2021年10月(日本語)
Approximation Lower Bounds for Neural Networks: slide v. Sep2020 (english) poster v. Jul2023 (english)
Transport Analysis (Neural ODE)
Transport analysis for denoising autoencoders: slide v. Aug2019 (english)
積分表現理論と輸送理論(ICML2019読み会資料) : slide v2019年8月 (日本語)
Quantum Machine Learning
Quantum algorithm for optimal random Fourier features: slide v. Nov2021 (english)
Theory of Neural Networks
Integral representation of neural networks, Ridgelet analysis
Transportation analysis of deep neural networks, Wasserstein geometry
Synthesizing method for neural networks, Probabilistic numerics
Generalization error analysis from the perspective of Geometric group theory
Machine Learning, Data Science
Non-parametric statistics, kernel methods
Particle filtering, EEG signal processing
AI4Math
Automated Theorem Proving (ATP)
Quantum Machine Learning (QML)
Autonomous Driving
sho.sonoda [at] riken.jp (most preferable)
sho.sonoda [at] aoni.waseda.jp (expired at the end of April 2018)
s.sonoda0110 [at] toki.waseda.jp (permanently valid alumni address)